Bal	laii
	•

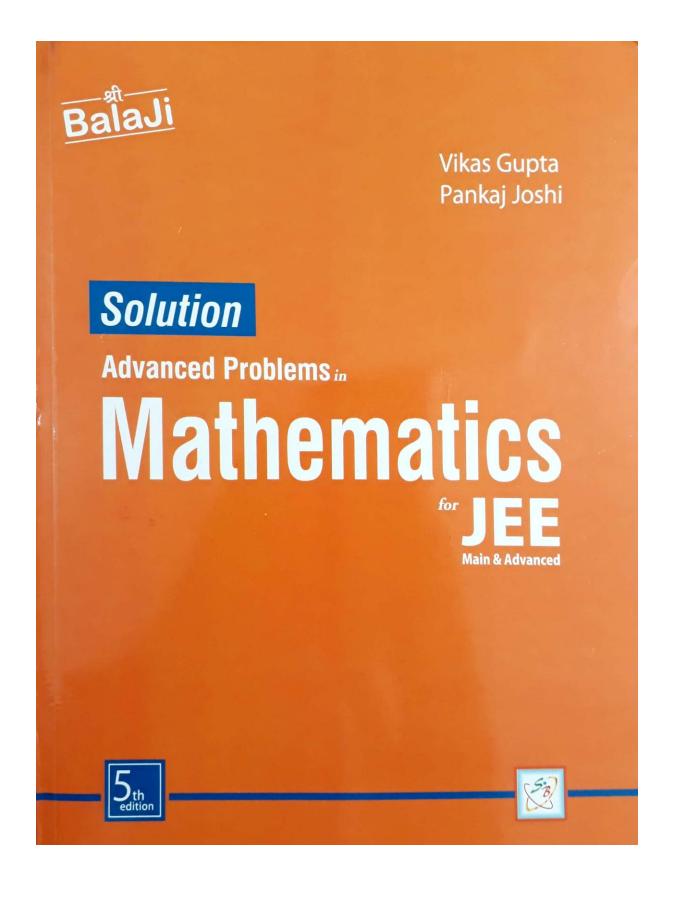
Solution to Advanced Problems in Mathematics for IIT JEE

Main and Advanced

by

Vikas Gupta and Pankaj Joshi

Downloaded From www.jeebooks.in



SOLUTION to

Advanced Problems

in

MATHEMATICS

for

JEE (MAIN & ADVANCED)

by:

Vikas Gupta

Director

Vibrant Academy India(P) Ltd. KOTA (Rajasthan) Pankaj Joshi

Director

Vibrant Academy India(P) Ltd. KOTA (Rajasthan)

SHRI BALAJI PUBLICATIONS

(EDUCATIONAL PUBLISHERS & DISTRIBUTORS)
[AN ISO 9001-2008 CERTIFIED ORGANIZATION]

Muzaffarnagar (U.P.) - 251001

CONTENTS

1. Function	1 – 28
2. Limit	29 – 42
Continuity, Differentiability and Differentiation	43 – 73
4. Application of Derivatives	74 – 101
5. Indefinite and Definite Integration	102 – 134
6. Area Under Curves	135 – 141
7. Differential Equations	142 – 149
-GEBRA	24. Solution o
8. Quadratic Equations	150 – 186
9. Sequence and Series	187 – 207
0. Determinants	208 – 215
1. Complex Numbers	216 – 223
2. Matrices	224 – 228
3. Permutation and Combinations	229 – 235
4. Binomial Theorem	236 – 241
5. Probability	242 – 247
6. Logarithms	248 – 261

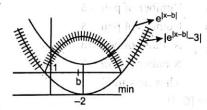
CO-ORDINATE GEOMETRY	
17. Straight Lines	262 – 273
18. Circle	274 – 284
19. Parabola	285 – 289
20. Ellipse	290 – 293
21. Hyperbola	294 – 295
TRIGONOMETRY	Head has a telebrary and the
22. Compound Angles	296 – 318
23. Trigonometric Equations	319 – 327
24. Solution of Triangles	328 – 342
25. Inverse Trigonometric Functions	343 – 351
	No.
VECTOR & 3DIMENSIONAL GEOME	TRY
26. Vector & 3Dimensional Geometry	352 – 368

Chapter 1 - Function



Exercise-1: Single Choice Problems

- 1. $f(x) = \log_2(2 2\log_{\sqrt{2}}(16\sin^2 x + 1))$ $0 \le \log_{\sqrt{2}} (16\sin^2 x + 1) \le \log_2 17 \qquad \Rightarrow 2 - 2\log_2 17 \le 2 - 2\log_{\sqrt{2}} (16\sin^2 x + 1) \le 2$ $\Rightarrow 0 < 2 - 2\log_{\sqrt{2}}(16\sin^2 x + 1) \le 2 \Rightarrow f(x) \le 1$
- **2.** For any $b \in R e^{|x-b|}$ is



 $|e^{|x-b|} - a|$ has four distinct solutions a > 3 so $a \in (3, \infty)$

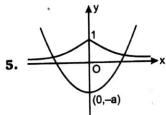
3. Domain = [-1, 1] and both are increasing functions.

 \therefore x = -1, we get minimum value & x = 1, we get maximum value.

$$\left[-\frac{\pi}{4} - \frac{\pi}{4}, \frac{\pi}{4} + \frac{\pi}{4}\right] = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

4.
$$\left(2^{2x^2+2y}-2^{2x+2y^2}\right)^2=1-2^{2x^2+2y^2+2x+2y+1}\geq 0$$

$$\Rightarrow \left(x + \frac{1}{2}\right)^2 + \left(y + \frac{1}{2}\right)^2 \le 0$$



7.
$$\sec^{-1}\left(-\frac{5}{2} + \frac{2}{2(x^2 + 2)}\right)$$
 $x^2 + 2 \ge 2$

$$= \sec^{-1}\left(-\frac{5}{2} + \frac{1}{(x^2 + 2)}\right)$$
 $\left(\frac{1}{x^2 + 2} \le \frac{1}{2}\right)$

$$\le \sec^{-1}(-2) = \pi - \sec^{-1}(2)$$
 $\left(-\frac{5}{2} + \frac{1}{x^2 + 2} \le -\frac{5}{2} + \frac{1}{2} = -2\right)$

$$= \frac{2\pi}{3}$$

8.
$$f'(x) = x^2 + ax + b$$
 is injective if $D \le 0$

$$a^2-4b\leq 0$$

If
$$a = 1, b = 1, 2, 3, 4, 5$$
 Number of pair = 5
 $a = 2, b = 1, 2, 3, 4, 5$ Number of pair = 5
 $a = 3, b = 3, 4, 5$ Number of pair = 3

$$a = 3, b = 3, 4, 5$$
 Number of pair = 2
 $a = 4, b = 4, 5$ Number of pair = 2
 $a = 5$ b has no value

9.
$$f(x) = \log_x [x] \Rightarrow f(x) \in [0, 1]$$

 $g(x) = |\sin x| + |\cos x|$
 $\Rightarrow g(x) \in [1, \sqrt{2}]$

10.
$$f(x) = 2x^3 - 3x^2 + 6$$

 $f'(x) = 6x^2 - 6x \ge 0$ $\Rightarrow x \in [1, \infty)$
and $f(x) \in [5, \infty)$

11.
$$0 \le \{x\} < 1$$

 $\{x\} (\{x\} - 1) (\{x\} + 2) \ge 0$
 $\Rightarrow \{x\} = 0 \Rightarrow x \in z$

14.
$$1 + \sin^2 x \in [1, 2]$$

$$\frac{1}{1 + \sin^2 x} \in \left[\frac{1}{2}, 1\right]$$

$$\sin^{-1}\left(\frac{1}{1 + \sin^2 x}\right) \in \left[\frac{\pi}{6}, \frac{\pi}{2}\right]$$

$$\frac{K\pi}{6} \in \left[\frac{\pi}{6}, \frac{\pi}{2}\right] \qquad K \in [1, 3]$$

15.
$$f(x-y) = f(x)f(y) - f(a-x)f(a+y)$$

Put $x = y = 0$

$$f(0) = [f(0)]^2 - f(a)f(a)$$

$$\Rightarrow f(a) = 0$$

$$[\because f(0) = 1]$$

Put
$$x = a$$
 and $y = x$

$$f(a-x) = f(a)f(x) - f(0)f(a+x)$$

$$\Rightarrow -f(a-x) = f(a+x) \Rightarrow f(2a-x) = -f(x)$$

18.
$$f(x) = 4x - x^2 = y$$

$$x^2 - 4x + y = 0$$

$$f^{-1}(x) = 2 - \sqrt{4 - x}$$

19.
$$[5\sin x] + [\cos x] = -6$$

$$\Rightarrow$$
 $-1 \le \cos x < 0$ and $-5 \le 5 \sin x < -4$

$$-1 \le \sin x < -\frac{4}{5}$$

20.
$$f(x) = ax + \cos x$$

$$f'(x) = a - \sin x$$

if f(x) is invertible, then

$$f'(x) \ge 0$$
 or $f'(x) \le 0$

$$\Rightarrow a \ge 1 \text{ or } a \le -1$$

21.
$$f(x) = [1 + \sin x] + \left[2 + \sin \frac{x}{2}\right] + \left[3 + \sin \frac{x}{3}\right] + \dots + \left[n + \sin \frac{x}{n}\right]$$

$$= (1 + 2 + 3 + ... + n) + [\sin x] + \left[\sin \frac{x}{2}\right] + \left[\sin \frac{x}{3}\right] + ... + \left[\sin \frac{x}{n}\right]$$

22.
$$y = \frac{x^2 + ax + 1}{x^2 + x + 1}$$

$$(y-1)x^2 + (y-a)x + (y-1) = 0$$

$$D \ge 0$$

$$(y-a)^2-4(y-1)^2\geq 0$$

$$-3y^2 + y(8-2a) + a^2 - 4 \ge 0 \ \forall \ y \in R$$

Not possible

23.
$$f(x) = [x] + [-x]$$

$$f(x) = \begin{cases} 0 & x \in I \\ -1 & x \notin I \end{cases}$$

$$g(x) = \{x\}$$

$$h(x) = f[g(x)] = f(\{x\})$$

$$\{x\} = 0$$
 $x \in I$

$$\{x\} = \{x\} \quad x \notin I$$

$$h(x) = \begin{cases} f(0) & x \in I \\ f(\{x\}) & x \notin I \end{cases} \Rightarrow h(x) = \begin{cases} 0 & x \in I \\ -1 & x \notin I \end{cases}$$

Hence, the option (b).

24.
$$f(x) = \left[\frac{x}{15}\right] \left[-\frac{15}{x}\right]$$
 $x \in (0, 90)$

$$0 \le x < 15$$

$$f(x) = 0$$

$$15 \le x < 30$$

$$f(x) = -1$$

$$30 \le x < 45$$

$$f(x) = -2$$

$$45 \le x < 60$$

$$f(x) = -3$$
$$f(x) = -4$$

$$60 \le x < 75$$
$$75 \le x < 90$$

$$f(x) = -5$$

Total integers in range $f(x) = \{0, -1, -2, -3, -4, -5\}$

25.
$$g(x) = \frac{1}{f(|x|)}$$

 $g(x) \Rightarrow$ even functions \Rightarrow symmetric about y-axis

$$\Rightarrow x \to \infty \quad f(x) \to 0$$

at
$$x = x_1$$
 $f(x) = 0 \implies g(x_1) \rightarrow \infty$

26. Homogeneous function $\Rightarrow f(tx, ty) = t^n f(x, y)$

27.
$$f(x) = \begin{bmatrix} 2x+3 & x \le 1 \\ a^2x+1 & x > 1 \end{bmatrix}$$

For
$$x \le 1$$
 $f(x) \le 5$

So for range of f(x) to be R.

$$\Rightarrow a^2 + 1 \le 5 \text{ and } a \ne 0$$

$$\Rightarrow a \in [-2, 2]$$

Hence,
$$a = \{-2, -1, 1, 2\}$$

28.
$$\log_{1/3}(\log_4(x-5)) > 0$$

$$0 < \log_4(x-5) < 1$$

$$1 < x - 5 < 4$$

29.
$$f(x) = \log_2\left(\frac{4}{\sqrt{2+x} + \sqrt{2-x}}\right); -2 \le x \le 2$$

Function 5

$$\sqrt{2 + x} + \sqrt{2 - x} = y$$

$$4 + 2\sqrt{4 - x^2} = y^2$$

$$y \in [2, 2\sqrt{2}]$$
Range $f(x) = \left[\log_2 \frac{4}{2\sqrt{2}}, \log_2 \frac{4}{2}\right]$

$$f(x)$$
 lies between $\left[\frac{1}{2},1\right]$

30.
$$|x^2 + 5x| + |x - x^2| = |6x| \implies |x^2 + 5x| + |x - x^2| = |(x^2 + 5x) + (x - x^2)|$$

 $|a| + |b| = |a + b| \implies ab \ge 0$
 $(x^2 + 5x)(x - x^2) \ge 0$
 $x(x + 5) \cdot x(x - 1) \le 0 \implies -5 \le x \le 1$

31.
$$f(x) + f\left(\frac{1}{x}\right) = f(x)f\left(\frac{1}{x}\right)$$

$$\Rightarrow f(x) = 1 \pm x^n$$

$$f(2) = 33 \Rightarrow n = 5$$

Hence,
$$f(x) = 1 + x^5$$

Here,
$$f(x) + f(-x) \neq 0$$
.

Hence not an odd function.

32.
$$g(x) = \frac{\sin x + \sin 7x}{\cos x + \cos 7x} + |\sin x| = \frac{2\sin 4x \cos 3x}{2\cos 4x \cos 3x} + |\sin x|$$

= $\tan 4x + |\sin x|$

$$g(x)$$
 period = π

33.
$$f(x) = \begin{bmatrix} \frac{x-1}{2} & x = \text{odd} \\ -\frac{x}{2} & x = \text{even} \end{bmatrix}$$
 $f(x): N \to Z$

Let
$$x = \text{odd} = (2n + 1); n > 0$$

$$f(x) = \frac{2n+1-1}{2} = n \implies +\text{ve integer}$$

Let
$$x = \text{even} = 2m$$
; $m > 0$

$$f(x) = -\frac{2m}{2} = -m \implies -\text{ve integer}$$

 \Rightarrow Range = codomains \Rightarrow onto and clearly f(x) is one-one function. Hence, bijective.

34.
$$y = \frac{2^{x+1} - 2^{1-x}}{2^x + 2^{-x}} = \frac{2^{2x+1} - 2}{2^{2x} + 1}$$

For person to be safe there should not be point common to the given curves and the voltage field graph. Only y = m + |x| does not have any point of intersection with the curve.

39. Gives
$$|f(x) + 6 - x^2| = |f(x)| + |4 - x^2| + 2$$

$$\Rightarrow |f(x) + 2 + (4 - x^2)| = |f(x)| + |4 - x^2| + 2$$

Function |a+b+c| = |a|+|b|+|c|. If $a \ge 0, b \ge 0, c \ge 0 \text{ or } a \le 0, b \le 0, c \le 0$ \Rightarrow $f(x) \ge 0$ and $4 - x^2 \ge 0 \Rightarrow -2 \le x \le 2$ and $f(x) \ge 0$ $40. \ f(x) = \cos px + \sin x$ **Period**: L.C.M. of $\left(\frac{2\pi}{p}, \frac{2\pi}{1}\right)$ For period to exist p should be a rational number. **41.** $y = f(e^x) + f(\ln|x|)$ Domain f(x) = (0, 1) \Rightarrow $0 < e^x < 1$ $\Rightarrow x < 0$ $0 < \ln |x| < 1$ \Rightarrow $1 < |x| < e \Rightarrow x \in (-e, -1) \cup (1, e)$...(2) Taking intersection $x \in (-e, -1)$ 42. Givens f(1) = 2, f(2) = 3, f(3) = 4, f(4) = 1, g(1) = 3 and f[g(x)] = g[f(x)]at x = 1. f[g(1)] = g[f(1)] $\Rightarrow f(3) = g(2) \Rightarrow g(2) = 4$ at x = 2 f[g(2)] = g[f(2)] $\Rightarrow f(4) = g(3) \Rightarrow g(3) = 1$ at x = 3 f[g(3)] = g[f(3)] $\Rightarrow f(1) = g(4)$ $\Rightarrow g(4) = 2$ $[y + [y]] = 2\cos x$ $\Rightarrow [y] + [y] = 2\cos x \Rightarrow 2[y] = 2\cos x; [y] = \cos x$ **43.** Gives $y = \frac{1}{2} [\sin x + [\sin x + [\sin x]]]$ where-

 $y = \frac{1}{2} [\sin x + [\sin x] + [\sin x]]$ $y = \frac{1}{3}(3[\sin x])$

$$y = \frac{1}{3}(3[\sin x])$$
$$y = [\sin x]$$

...(2)

From eqn. (1) & (2),

$$[\sin x] = \cos x$$

$$\Rightarrow \qquad \cos x = 0, 1, -1$$

Hence, no solution.

Hence, no solution. 44. $f(x) = \frac{x^{2n}}{(x^{2n} \operatorname{sgn} x)^{2n+1}} \left[\frac{e^{\frac{1}{x}} - e^{-\frac{1}{x}}}{\frac{1}{e^{\frac{1}{x}} + e^{-\frac{1}{x}}}} \right] x \neq 0 \text{ and } f(0) = 1$

when
$$f(x) = \frac{(x^{2n})}{(x^{2n})^{2n+1}} \left[\frac{\frac{1}{e^x} - e^{-\frac{1}{x}}}{\frac{1}{e^x} + e^{-\frac{1}{x}}} \right]; x > 0$$

$f(x) = \frac{x^{2n}}{-(x^{2n})^{2n+1}} \left[\frac{e^{\frac{1}{x}} - e^{-\frac{1}{x}}}{\frac{1}{e^{\frac{1}{x}} + e^{-\frac{1}{x}}}} \right]; \ x < 0$

www.jeebooks.in

Clearly, f(x) = f(-x). Hence, f(x) is even function.

45.
$$f(n) = 2(f(1) + f(2) + f(n-1))$$

 $f(2) = 2f(1)$
 $f(3) = 2[f(1) + f(2)] = 2\left[\frac{f(2)}{2} + f(2)\right] = 3f(2)$
 $f(4) = 2[f(1) + f(2) + f(3)] = 2\left[\frac{f(3)}{2} + f(3)\right] = 3f(3) = 3^{2}f(2)$

$$\sum_{r=1}^{m} f(r) = f(1) + f(2) + f(m) = f(1) + f(2) + 3f(2) + f(m) = f(1) + f(2)[1 + 3 + 3^{2} + 3^{2} + 3^{2} + 3^{2}]$$

$$= f(1) + 2 \cdot \frac{(3^{m-1} - 1)}{(3 - 1)} = 3^{m-1}$$

46. Gives

$$f(x) = \frac{x}{\sqrt{1+x^2}}$$

$$f(f(x)) = \frac{x}{\sqrt{1+2x^2}}$$

$$f(f(f(x))) = \frac{x}{\sqrt{1+3x^2}}$$

$$\vdots$$

$$fofo......fof(x) = \frac{x}{\sqrt{1+nx^2}} = \frac{x}{\sqrt{1+\left(\sum_{i=1}^{n} 1\right)x^2}}$$

47. $f(x) = 2x + |\cos x|$

Range $f(x) = R = \text{codomain} \Rightarrow \text{onto}$.

Clearly, f(x) is increasing function \Rightarrow one-one function.

48. Gives $f(x) = x^3 + x^2 + 3x + \sin x$

Since, f(x) is continuous function.

and
$$f(x) = \infty$$
 as $x \to \infty$

$$f(x) = -\infty$$
 as $x \to -\infty$

Function

9

Range $f(x) = R = \text{codomains} \Rightarrow \text{onto function}$

and
$$f'(x) = 3x^2 + 2x + 3 + \cos x = 3\left(x + \frac{1}{3}\right)^2 + \frac{8}{3} + \cos x \Rightarrow f'(x) > 0$$

Hence, f(x) is one-one.

49.
$$f(x) = \{x\} + \{x+1\} + \dots \{x+99\}$$

Since
$$\{x\} = \{x + I\}$$
 where $I = \text{integer}$
 $f(x) = \underbrace{\{x\} + \{x\} \dots \{x\}}_{100 \text{ times}}$

$$f(x) = 100\{x\} \implies f(\sqrt{2}) = 100\{\sqrt{2}\} = 100 \times 0.414 = 41.4$$

[$f(\sqrt{2})$] = 41

50.
$$|\cot x + \csc x| = |\cot x| + |\csc x|$$
; $x \in [0, 2\pi]$

$$\Rightarrow$$
 cot $x \ge 0$ and cosec $x \ge 0 \Rightarrow 1^{st}$ quadrant

or
$$\cot x \le 0$$
 and $\csc x \le 0 \Rightarrow 4^{th}$ quadrant

Hence,
$$x \in \left(0, \frac{\pi}{2}\right] \cup \left[\frac{3\pi}{2}, 2\pi\right)$$

51. If
$$f(4+x) = f(4-x)$$

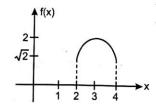
$$\Rightarrow$$
 $f(x)$ is symmetric about $x = 4$.

Roots of
$$f(x) = 0$$
 are of the form

$$4-\alpha, 4+\alpha, 4-\beta, 4+\beta, 4-\gamma, 4+\gamma, 4-\delta, 4+\delta$$

52.
$$f(x) + x - 6 = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5)$$

$$\Rightarrow f(6) = 120$$
53. $f(x) = \sqrt{x-2} + \sqrt{4-x}$



$$x \in [1,9) \cup [11,18) \cup [22,27) \cup [33,36) \cup [44,45)$$

55.
$$\log_{\left[x+\frac{1}{2}\right]} (2x^2 + x - 1)$$

$$\left[x+\frac{1}{2}\right] > 0, \left[x+\frac{1}{2}\right] \neq 1 \& 2x^2 + x - 1 > 0$$

$$\Rightarrow x + \frac{1}{2} \ge 2 & (2x - 1)(x + 1) > 0$$

$$x \ge \frac{3}{2} & x(-\infty, -1) \cup \left(\frac{1}{2}, \infty\right)$$

$$\Rightarrow x \in \left[\frac{3}{2}, \infty\right)$$

56.
$$[x^2] + [x] - 2 = 0$$

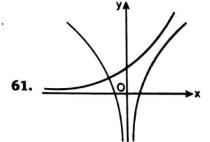
Let
$$[x] + [x] - 2 = 0$$

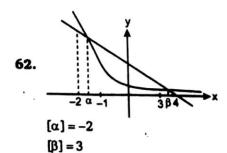
Let $[x] = t$
 $\Rightarrow t^2 + t - 2 = 0$
 $\Rightarrow (t + 2)(t - 1) = 0$
 $\Rightarrow t = -2 \text{ or } t = 1$
 $\Rightarrow [x] = -2 \text{ or } [x] = 1$

 $\Rightarrow x \in [-2, -1) \cup [1, 2)$ **58.** f(x) is many one function.

59.
$$f(f(x)) = 2 + f(x)$$
 $f(x) \ge 0$
 $= 2 - f(x)$ $f(x) < 0$
 $f(f(x)) = 4 + x$ $x \ge 0$
 $= 4 - (x)$ $x < 0$

60.
$$f'(x) = \frac{7(3x^2 - 2x + 3)}{(3 + 3x - 4x^2)^2} > 0 \implies f(x) \uparrow$$





Function 11

63.
$$f(x) = \sqrt{\sin(\log_7(\cos(\sin x)))}$$

 $\cos(\sin x) \le 1 \Rightarrow \cos(\sin x) = 1 \Rightarrow f(x) = 0$

64.
$$-3 \le |x| \le 2 \Rightarrow -2 \le |x| \le 2 \Rightarrow -2 \le x < 3$$

65.
$$f(x) = \frac{\pi}{2} + \cot^{-1} \{-x\}$$

 $0 \le \{-x\} < 1 \Rightarrow \frac{\pi}{4} < \cot^{-1} \{-x\} \le \frac{\pi}{2}$

66.
$$f(f(x)) = x$$

$$f_{2008}(x) + f_{2009}(x) = x + f(x) = x + \frac{3x+5}{2x-3} = \frac{2x^2+5}{2x-3}$$

67.
$$f(x) = \left(x + \frac{1}{x} + 1\right) \left(x^2 + \frac{1}{x^2}\right); \ x^2 + \frac{1}{x^2} \ge 2; \ x + \frac{1}{x} + 1 \ge 3 \implies f(x) \ge 6$$

68.
$$f(x) = e^{x^3 - 3x^2 - 9x + 2}$$

$$f'(x) = e^{(x^3 - 3x^2 - 9x + 2)}3(x - 3)(x + 1)$$

$$\Rightarrow f(x)$$
 is many one.

at
$$x = -1$$
, $f(x) = e^7$

at
$$x \to -\infty$$
, $f(x) \to 0$

Range of f(x) is $(0, e^7]$.

69.
$$D_f:(-2,1)$$

$$-\infty < \log \left(\frac{\sqrt{4 - x^2}}{1 - x} \right) < \infty$$

$$-1 \le \sin \left(\log \left(\frac{\sqrt{4 - x^2}}{1 - x} \right) \right) \le 1$$

70.
$$f'(x) \ge 0 \ \forall \ x \in R \implies 3x^2 + 2(a+2)x + 3a \ge 0 \ \forall \ x \in R$$

$$\Rightarrow D \leq 0$$

$$\Rightarrow 4(a+2)^2 - 4.9a \le 0$$

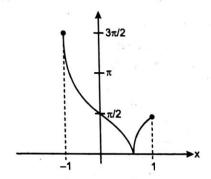
$$\Rightarrow a^2 - 5a + 4 \le 0 \Rightarrow (a - 1)(a - 4) \le 0$$

$$\Rightarrow a \in [1, 4]$$

71. Min. value of
$$3x^2 + bx + c = 0$$

$$\Rightarrow D=0$$

72.
$$f(x) = \sin^{-1} x - \cos^{-1} x = 2 \sin^{-1} x - \frac{\pi}{2}$$

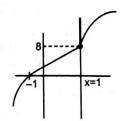


73. is one-one when

$$2^{3} = \ln 1 + b^{2} - 3b + 10$$

$$\Rightarrow b^{2} - 3b + 2 = 0$$

$$\Rightarrow b = 1, 2$$



80. We have, $[x]^2 - 7[x] + 10 < 0$

$$\Rightarrow ([x]-5)([x]-2)<0$$

$$\Rightarrow$$
 2<[x]<5

$$\Rightarrow$$
 [x] = 3 or 4

$$\Rightarrow x \in [3,5)$$

and
$$4[y]^2 - 16[y] + 7 < 0$$

$$(2[y]-7)(2[y]-1)<0$$

$$\Rightarrow \frac{1}{2} < [y] < \frac{7}{2}$$

$$\Rightarrow$$
 [y] = 1 or 2 or 3

$$\Rightarrow$$
 $y \in [1, 4)$

Therefore,
$$x + y \in [4, 9)$$

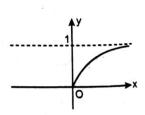
$$[x+y] \in \{4,5,6,7,8\}$$

Hence, [x + y] cannot be 9.

81.
$$f: R \to R$$
 $f(x) = \frac{e^{|x|} - e^{x}}{e^{x} + e^{x}}$

$$f(x) = \begin{cases} \frac{e^x - e^{-x}}{e^x + e^{-x}} & \text{if } x \ge 0\\ \frac{e^{-x} - e^{-x}}{e^x + e^{-x}} & \text{if } x < 0 \end{cases}$$

Many one into function.



Function 13

82.
$$f(x)$$
 such $f(1-x) + 2f(x) = 3x \ \forall \ x \in R$

$$x \to \left(\frac{1}{2} + x\right)$$

$$f\left(\frac{1}{2} - x\right) + 2f\left(\frac{1}{2} + x\right) = 3\left(\frac{1}{2} + x\right) \qquad \dots (1)$$

$$x \to \left(\frac{1}{2} - x\right)$$

$$f\left(\frac{1}{2}+x\right)+2f\left(\frac{1}{2}-x\right)=3\left(\frac{1}{2}-x\right) \qquad \dots (2)$$

$$3\left(f\left(\frac{1}{2} + x\right) + f\left(\frac{1}{2} - x\right)\right) = 3; \quad f\left(\frac{1}{2} - x\right) = 1 - f\left(\frac{1}{2} + x\right)$$

$$1 + f\left(\frac{1}{2} + x\right) = \frac{3}{2} + 3x; \quad f\left(\frac{1}{2} + x\right) = \frac{1}{2} + 3x$$

$$x = -\frac{1}{2} \Rightarrow f(0) = \frac{1}{2} - \frac{3}{2} = -1$$

83.
$$f:[0,5] \rightarrow [0,5]$$

$$f(x) = ax^2 + bx + c$$
 $a, b, c \in R, abc \neq 0$

0 5

$$25a + 5b + c = 0$$

$$f(5) = 0$$

$$ax^2 + bx + c = 0(\alpha)$$

$$\frac{c}{a} = 5 \times \beta$$

$$cx^2 + bx + a = 0\left(\frac{1}{\alpha}\right)$$

$$\beta = \frac{1}{a}$$

So, roots are
$$\left(a, \frac{1}{5}\right)$$
.

84.
$$f(x) = x^2 + \lambda x + \mu \cos x$$

$$f(x) = x$$

85.
$$f(k) = \text{odd}$$

$$f(k+1) = \text{even}$$
 $k = 1, 2, 3$

$$f(1) \Rightarrow \text{odd}$$

$$f(2) \Rightarrow \text{even}$$

$$f(3) \Rightarrow \text{odd}$$

$$f(4) \Rightarrow \text{even}$$

$$f(1) \Rightarrow \text{even}$$

$$f(2) \Rightarrow \text{odd}$$

$$f(3) \Rightarrow \text{even}$$

$$f(4) \Rightarrow \text{odd}$$

$$f(3) \Rightarrow \text{even}$$

$$f(4) \Rightarrow \text{odd}$$

$$f(3) \Rightarrow \text{even}$$

$$f(3) \Rightarrow \text{even}$$

$$f(3) \Rightarrow \text{even}$$

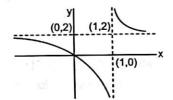
$$f(4) \Rightarrow \text{odd}$$
Hence, 4 functions.

86. $y = \tan(\sin x)$.

Here function is continuous and differentiable and $y_{max} = tan(1)$; $y_{min} = -tan 1$.

87.
$$f(x) = \frac{2x}{x-1}$$

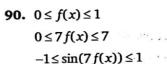
 $y = 2 + \frac{2}{(x-1)}$
 $(y-2)(x-1) = 2$

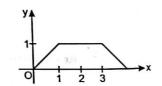


88.
$$R_f = [-2, 4]$$

 $R_g = [-1, 2]$

89.
$$f(x) = (x^4 + 1) + \frac{1}{x^2 + x + 1}$$





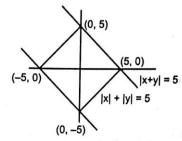
91.
$$|\ln|\ln|x|| \ge 0$$
 \cap $|x|^2 - 7|x| + 10 \le 0$
 $|\ln|x|| \ge 1$ $(|x| - 2)(|x| - 5) \le 0$
 $|\ln|x| \in (-\infty, -1) \cup [1, \infty)$ $2 \le |x| \le 5$
 $|x| \in \left(0, \frac{1}{e}\right] \cup [e, \infty)$ $x \in (-5, -2] \cup [2, 5]$
 $x \in (-\infty, -e] \cup \left[-\frac{1}{e}, 0\right] \cup \left(0, \frac{1}{e}\right] \cup [e, \infty)$

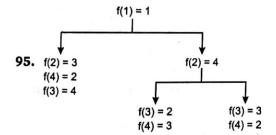
Function 15

92.
$$\log_{\{x\}+3\{x\}} \left(\left[[x] - \frac{5}{2} \right]^2 + \frac{3}{4} \right) \ge 0 \Rightarrow [x] + 3\{x\} > 1$$

93.
$$x-3=X$$
 $|X|+|Y|=5$ $y-1=Y$ $x+y-4=X+Y$ $|X+Y|=5$

number of pairs of (x, y) = 12





96.
$$x^2 - x \neq 0 \Rightarrow x \neq 0, 1$$

97. Total one-one function – (at least one get right place) + (at least two get right place) – (at least three get right place) + (at least four get right place) $= {}^{6}C_{4} \times 4! - {}^{4}C_{1} \times {}^{5}C_{3} \times 3! + {}^{4}C_{2} \times {}^{4}C_{2} \times 2! - {}^{4}C_{3} \times {}^{3}C_{1} + {}^{4}C_{4} = 181$

98.
$$f(x) = x^2 - 2x - 3$$

 $g(x) = f^{-1}(x) = 1 + \sqrt{x+4}$ $x \ge -4$
 $f(x) = g(x) = f^{-1}(x) \Rightarrow f(x) = x$
 $\Rightarrow x^2 - 3x - 3 = 0 \Rightarrow x = \frac{3 + \sqrt{21}}{2}$

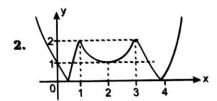
46

Exercise-2: One or More than One Answer is/are Correct

1.570

1.
$$f(-4) = f(4) = 40$$

 $f(-13) = f(13) = f(3) = 19$
 $f(-11) = f(11) = f(1) = 2$



3.
$$f(x) = \cos^{-1}\left(\frac{1-\tan^2(x/2)}{1+\tan^2(x/2)}\right)$$
 is defined when

$$\frac{x}{2} \neq (2n-1)\frac{\pi}{2}$$

$$\Rightarrow x \neq (2n-1)\pi$$

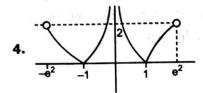
Domain =
$$R - \{(2n-1)\pi : n \in I\}$$

$$\therefore \quad \text{Range} = [0, \pi)$$

$$f(x) = \cos^{-1}(\cos x)$$

f(x) is even function.

when $x \in (\pi, 2\pi)$, then $f(x) = 2\pi - x$ is differentiable.



$$0 < |k-1| - 3 < 2$$

$$\Rightarrow k \in (-4, -2) \cup (4, 6)$$

5. (a)
$$D_f \in R$$

(b)
$$D_f \in R$$

Function 17

(c)
$$f(x) = \sqrt{2\cos^2 x + \cos x + \frac{1}{8}}$$

$$D_f \in R$$

(d)
$$\ln(1+|x|) \ge 0$$

$$D_f \in \left\{ \frac{(2n+1)\,\pi}{2} \right\}$$

6.
$$f\left(\frac{3}{2}\right) = \frac{9}{4}$$

$$f\left(f\left(\frac{3}{2}\right)\right) = \frac{3}{2}$$

$$f\left(f\left(f\left(\frac{3}{2}\right)\right)\right] = \frac{9}{4}$$

$$f\left(\frac{5}{2}\right) = 2$$

$$f\left(f\left(\frac{5}{2}\right)\right)=1$$

$$f\left(f\left(f\left(\frac{5}{2}\right)\right)\right) = 1$$

8.
$$f^{-1}(f(x)) = f(f^{-1}(x)) = x$$

if
$$f(f^{-1}(x)) = f^{-1}(x) \Rightarrow x = f^{-1}(x)$$

if
$$f(f^{-1}(x)) = f^{-1}(x) \Rightarrow f(f^{-1}(f(x))) = f^{-1}(f(x)) \Rightarrow f(x) = f^{-1}(f(x)) = x$$

9.
$$f(x) = \cos^{-1} x + \cos^{-1} \left(\frac{x}{2} + \frac{\sqrt{3} \cdot \sqrt{1 - x^2}}{2} \right)$$

Let $x = \cos \theta$

$$f(x) = \cos^{-1}(\cos\theta) + \cos^{-1}\left(\frac{1}{2}\cos\theta + \frac{\sqrt{3}}{2}\sin\theta\right)$$

$$=\cos^{-1}(\cos\theta)+\cos^{-1}\left(\cos\left(\theta-\frac{\pi}{3}\right)\right)$$

$$=\frac{\pi}{3}$$

$$=2\theta-\frac{\pi}{3} \qquad \frac{\pi}{3}<\theta\leq\pi$$

Solution of Advanced Problems in Mathematics for JEE

10.
$$f(x) = \cos^{-1}(-\{-x\})$$

 $-\{-x\} \in (-1,0] \implies \cos^{-1}(-\{-x\}) \in \left[\frac{\pi}{2},\pi\right]$

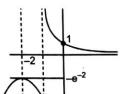
12.
$$h(x) = [\ln x - 1] + [1 - \ln x]$$

$$\Rightarrow h(x) = \begin{bmatrix} -1, & \ln x - 1 \notin I \\ 0, & \ln x - 1 \in I \end{bmatrix}$$

14. $f(x) = \frac{1}{2}$, f(x) is periodic & constant function.

16.
$$f(x) = \frac{e^{-x}}{1+x}$$

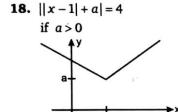
$$f'(x) = \frac{-e^{-x}(x+2)}{(1+x)^2}$$

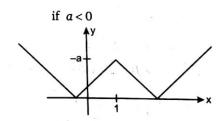


17.
$$[x] = \frac{2x\{x\}}{x + \{x\}} = \frac{2\{x\}([x] + \{x\})}{[x] + 2\{x\}}$$

$$\Rightarrow [x]^2 = 2\{x\}^2$$

$$\Rightarrow x = 1 + \frac{1}{\sqrt{2}}$$





- (a) if eq. has three distinct real root then a < 0 and a = -4
- (b) 4 distinct roots for $a \in (-\infty, -4)$
- (c) if -4 < a < 4, there are two distinct real roots
- (d) if a > 4, no real root.

19. (a)
$$f_2(x) = (\sin x)^{1/2} + (\cos x)^{1/2}$$

 $\sqrt{\sin x} > \sin^2 x$; $\sqrt{\cos x} > \cos^2 x \implies \sqrt{\sin x} + \sqrt{\cos x} > 1$

(b)
$$f_2(x) = (\sin x)^{1/2} + (\cos x)^{1/2}$$
 $\Rightarrow f_2(x) = 1$ at $x = 2k\pi$

(c)
$$f_2(x) = (\sin x)^{1/2} + (\cos x)^{1/2}$$
; $f_3(x) = (\sin x)^{1/3} + (\cos x)^{1/3}$
if $x \in (2k\pi, 2k\pi + \pi/2)$ $0 < \sin x < 1$ and $0 < \cos x < 1$

As power increases, value of function decreases.

Function

$$\Rightarrow f_2(x) < f_3(x)$$
d) $f_2(x) = (\sin x)^{1/3} + (\sin x)^{1/3$

(d)
$$f_3(x) = (\sin x)^{1/3} + (\cos x)^{1/3}$$

$$f_5(x) = (\sin x)^{1/5} + (\cos x)^{1/5}$$

$$\Rightarrow f_3(x) < f_5(x)$$

20.
$$-1 \le \log_3\left(\frac{x^2}{3}\right) \le 1 \implies \frac{1}{3} \le \frac{x^2}{3} \le 3$$

Range is [0, 1].

21.
$$\frac{3x-1}{2} = n$$

$$\left[\frac{4n+5}{9}\right] + \left[\frac{4n+5}{9} + \frac{1}{2}\right] = n$$

22.
$$\sin^6 \theta + \cos^6 \theta = 1 - 3\sin^2 \theta \cos^2 \theta$$

$$=1-\frac{3}{4}\left(\frac{1-\cos 4\theta}{2}\right)=\frac{5}{8}+\frac{3}{8}\cos(4\theta)$$

$$= \frac{5}{8} + \frac{3}{8}\cos(x) \text{ sold not send to indergene}$$

23. (a)
$$g(f(x)) = \ln(\sin x)$$

(b)
$$x^2 + (a-1)x + 9 > 0 \ \forall \ x \in R$$

$$(a-1)^2 - 36 < 0 \Rightarrow -5 < a < 7$$

(c)
$$f(f(x)) = (2011 - (2011 - x^{2012}))^{1/2012} = x$$

24.
$$\left[\frac{1}{4} + \frac{150}{200}\right] + \left[\frac{1}{4} + \frac{151}{200}\right] + \dots + \left[\frac{1}{4} + \frac{199}{200}\right] = 50$$

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 4 to 6

Sol.
$$f(x) = \sqrt{\theta x^2 - 2(\theta^2 - 3)x - 12\theta}$$

$$g(x) = \ln\left(x^2 - 49\right)$$

if domain of f + g is same as domain of g. Then

$$\theta x^2 - 2(\theta^2 - 3)x - 12\theta \ge 0 \ \forall \ x \in (-\infty, -7) \cup (7, \infty)$$

$$\Rightarrow \qquad \theta \in \left[\frac{6}{7}, \frac{7}{2}\right]$$

$$h(\theta) = \ln\left[\int_{0}^{\theta} 4\cos^{2}t \, dt - \theta^{2}\right] = \ln\left[2\theta + \sin 2\theta - \theta^{2}\right]$$

Paragraph for Question Nos. 7 to 8

7. For
$$x \in [5^4, 5^5]$$

$$f(x) = \alpha^4 \left[2 - \left| \frac{x}{5^4} - 3 \right| \right]$$

$$\alpha = 2$$

$$f(x)_{\text{max}} = 32$$

8.
$$\alpha = 5$$

$$f(x) = 5^{4} \left[2 - \left| \frac{x}{5^{4}} - 3 \right| \right]$$
$$f(2007) = 5^{4} \left[2 - \frac{2007}{625} + 3 \right] = 1118$$

Paragraph for Question Nos. 9 to 10

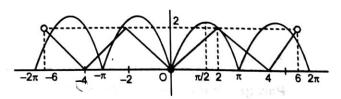
9.
$$f(x)$$
 $0 \le x \le 2$ $-x$ $-2 \le x < 0$

$$f(x) = f(x+4)$$

$${f(5.12)} = {f(1.12)} = 0.12$$

 ${f(7.88)} = {f(3.88)} = {f(-0.12)} = 0.12$

10.



Paragraph for Question Nos. 13 to 14

13.
$$f(x) = 3$$

 $3 + \ln b_1, 3 + \ln b_2, 3 + \ln b_3$ are in A.P.

14.
$$y = 3x^2$$

Let slope of tangent be m.

 $\Rightarrow y = m(x-2)$ $\Rightarrow m(x_1-2) = 3x_1^2$

Also,
$$m = 6x_1$$

 $\Rightarrow 6x_1(x_1 - 2) = 3x_1^2$
 $x_1 = 4$

Function

Paragraph for Question Nos. 15 to 16

15.
$$y = 2^{x^4 - 4x^2} \Rightarrow x^4 - 4x^2 = \log_2 y$$

$$x^2 = \frac{4 + \sqrt{16 - 4\log_2 y}}{2} \Rightarrow x = \sqrt{2 + \sqrt{4 - \log_2 y}}$$

m = 24

16.
$$g(x) = 1 + \frac{6}{\sin x - 2} \Rightarrow \text{Range}[-5, -2]$$

Exercise-4: Matching Type Problems

1.
$$[x] + \{x\} + [y] + \{z\} = 12.7$$
 ...(i)

$$[x] + \{y\} + [z] + \{z\} = 4.1$$
 ((ii)

$$\{x\} + [y] + \{y\} + [z] = 2$$

Adding (i), (ii) & (iii),

$$\Rightarrow [x] + \{x\} + [y] + \{y\} + [z] + \{z\} = 9.4$$

$$\Rightarrow$$
 {y}+[z]=-3.3, {x}+[y]=5.3, [x]+{z}=7.4

$$\Rightarrow$$
 {y} = 0.7, [z] = -4, {x} = 0.3, [y] = 5

$$[x] = 7, \{z\} = 0.4$$

4. (A)
$$f(x) = \sin^2 2x - 2\sin^2 x = 2\sin^2 x \cos 2x$$

Function is even, hence many one, function is also periodic.

$$f(x) = (1 - \cos 2x)\cos 2x = \frac{1}{4} - \left(\cos 2x - \frac{1}{2}\right)^2$$

Range of function is $\left[-2, \frac{1}{4}\right]$.

(B)
$$f(x) = 4x$$

(C)
$$f(x) = \sqrt{\ln(\cos(\sin x))}$$

 $\ln(\cos(\sin x)) \ge 0$

$$\Rightarrow \cos(\sin x) = 1$$

$$\Rightarrow f(x) = 0$$

Solution of Advanced Problems in Mathematics for JEE

(D)
$$f(x) = \tan^{-1} \left(\frac{x^2 + 1}{x^2 + \sqrt{3}} \right)$$

f(x) is even & hence many one.

Range is
$$\left[\frac{\pi}{6}, \frac{\pi}{4}\right]$$
.

- 7. (A) Domain of g(x) is [0, 3].
 - (B) Range of g(x) is [0, 3].
 - (C) f(f(f(2))) = 1f(f(f(3))) = 2
 - (D) m = 3

Exercise-5: Subjective Type Problems

1.
$$f(x) - 2x + 1 = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5)(2009x - \alpha)$$

2.
$$f(x) = x^3 - 3x + 1$$

$$f(f(x)) = 0$$

Let
$$f(x) = t$$

$$\Rightarrow f(t) = 0$$

$$\Rightarrow t = \alpha, \beta, \gamma$$

$$\Rightarrow f(x) = \alpha, \alpha \in (-2, -1)$$

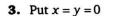
No. of solution = 1

$$f(x) = \beta, \ \beta \in (0, 1)$$

No. of solution = 3

$$f(x) = \gamma, \ \gamma \in (1,2)$$

No. of solution =3



$$f(1) = 4$$

Put
$$x = 0$$
, $y = 1$ $f(2) = 9$

4.
$$-1 \le \frac{2x}{3} \le 1$$
 $\Rightarrow \frac{-3}{2} \le x \le \frac{3}{2}$

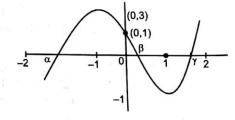
$$12 - 3^x - \frac{27}{3^x} \ge 0 \implies (3^x - 3)(3^x - 9) \le 0 \implies 1 \le x \le 2$$

5.
$$\sin^{-1}(0) + \cos^{-1}(-1) = \pi$$
 $0 \le x^2 < \frac{4}{9}$

$$0 \le x^2 < \frac{4}{9}$$

$$\sin^{-1}(1) + \cos^{-1}(0) = \pi$$
 $\frac{4}{9} \le x^2 < \frac{13}{9}$

$$\frac{4}{9} \le x^2 < \frac{13}{9}$$



(Calculation)				
8	. Let	$P(x) = ax^4 + bx^3 + cx^2 + dx + 2$	()	
		P(1) = a + b + c + d + 2 = 5		(1)
		P(-1) = a - b + c - d + 2 = 5		(2)
	\Rightarrow	b+d=0 and $a+c=3$	100	
		P(2) = 16a + 8b + 4c + 2d + 2 = 2	- 1	(3)
		P(-2) = 16a - 8b + 4c - 2d + 2 = 2		(4)
	\Rightarrow	4a + c = 0 and $4b + d = 0$.1 728	
	\Rightarrow	b = d = 0 and $a = -1, c = 4$		
	\Rightarrow	$P(x) = -x^4 + 4x^2 + 2$	194 00 34	
9.	(x + 1)	$y^2 + y^2 = 1$ (: $y > 0$)	24 - 30	+ - =AV
		x + y = k	1965 - 36 ***	<u>^</u> ^'
				71
		$\left \frac{k+1}{\sqrt{2}}\right < 1$	(-2,0)	(-1,0)
		$-\sqrt{2} - 1 < k < \sqrt{2} - 1$	• 6	· · · · · · · · · · · · · · · · · · ·
				(
	→	$0 < k < \sqrt{2} - 1 \qquad (\because k > 0)$	W. L. L.	10 05
10.	x	$\left[\frac{x}{2}\right] + \left[\frac{x}{3}\right] = 3$		17.5
	γ	[2] [3]	2.0 - 1	Tv x m
	. 147	han $\begin{bmatrix} x \end{bmatrix}$ is an integer than definitely $\begin{bmatrix} x \end{bmatrix}$.	8	
	vv	hen $\left[\frac{x}{3}\right]$ is an integer then definitely $\sqrt{[x] + \left[\frac{x}{2}\right]}$ is	s also an integer.	
	_ [$\frac{1}{ x }$		
	So,	$[x] + \left[\frac{x}{2}\right] = 2$ and $\left[\frac{x}{3}\right] = 1$ (and check like this)		
			er	
	[x	$\left[\left(\frac{x}{2} \right) \right] = 4, \left[\frac{x}{3} \right] = 1 \implies x \in [3,6)$		
		x ∈ [3, 4)	•	
		$\begin{bmatrix} x \\ \end{bmatrix} = 1$	41-	
	[r] - 3	1 = 1 = 1		

Function

$$[x]=3$$
, $\left[\frac{x}{2}\right]=1$

So, $x \in [3, 4)$ satisfies.

So, $x \in [3, 4)$ satisfies. when $x \in [4, 5)[x] = 4\left[\frac{x}{2}\right] = 2 \Rightarrow [x] + \left[\frac{x}{2}\right] = 6 \neq 4$ not satisfies, similarly on checking all possibilities we have only $x \in [3, 4)$.

$$\therefore a=3, b=4$$

$$\therefore \quad a = 3, b = 4$$
11. $f(f(x)) = \frac{1}{201\sqrt{1 - \frac{1}{1 - x^{2011}}}} = \frac{201\sqrt[3]{1 - x^{2011}}}{-x}$

$$f(f(f(x))) = \frac{2011\sqrt{1 - \frac{-1}{1 - x^{2011}}}}{\frac{-1}{201\sqrt[3]{1 - x^{2011}}}} = \frac{\frac{-x}{201\sqrt[3]{1 - x^{2011}}}}{\frac{-1}{201\sqrt[3]{1 - x^{2011}}}} = x$$

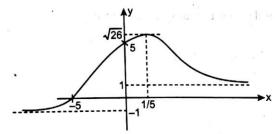
$$f_{2013}(x) = x = \{-x\}$$

12.
$$f(x) = 0$$
 $0 < x < 6$
 $= -1$ $6 \le x < 12$
 $= -2$ $12 \le x < 18$
 $= -3$ $18 \le x < 24$
 $= -4$ $24 \le x < 30$
 $= -5$ $x = 30$

13.
$$(f(x,y))^2 - (g(x,y))^2 = \frac{1}{2}$$

 $f(x,y) \cdot g(x,y) = \frac{\sqrt{3}}{4}$
 $\Rightarrow f(x,y) = x^2 - y^2 = \pm \frac{\sqrt{3}}{2}$
 $g(x,y) = 2xy = \pm \frac{1}{2}$

14.
$$f(x) = \frac{x+5}{\sqrt{x^2+1}}$$



15. f(x) is injective for $x \in \left(-\infty, \frac{1}{5}\right]$

$$[\lambda] = \left[\frac{1}{5}\right] = 0$$

16.
$$f: R \to R$$
 $f(x) = \frac{x^3}{3} + (m-1)x^2 + (m+5)x + n$
 $f'(x) = x^2 + 2(m-1)x + (m+5) \ge 0$
 $\Delta \le 0$

Function

$$4(m-1)^{2} - 4(m+5) \le 0$$

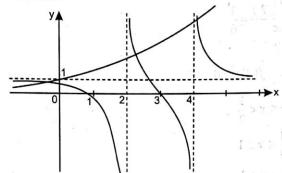
$$m^{2} - 3m - 4 \le 0$$

$$(m-4)(m+1) \le 0$$

$$-1 \le m \le 4$$

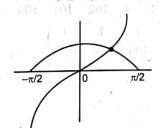
17.
$$f(x) = \frac{(x-1)(x-3)}{(x-2)(x-4)} - e^x$$

f(x) = 0 has three solutions.



$$f(-x) = \frac{(x+1)(x+3)}{(x+2)(x+4)} - e^{-x} = 0$$
 has three solutions.

$$x^3 = \cos x$$

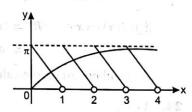


1 3(p+7)+5=0ar ' h(p-7)+5<0 .p. 4 -

there are total 7 solutions.

18:
$$\cos^{-1}\left(\frac{2}{(1+x)^2}-1\right)=\pi(1-\{x\})$$

there are total 76 solutions.



19.
$$f(x) = x^2 - bx + c = 0$$

$$p_1 + p_2 = b \text{ (odd no.)}$$

$$p_1 = 2$$

$$\Rightarrow p_1 = 2$$

$$p_1 p_2 = c$$

$$b + c = (p_2 + 2) + 2p_2 = 35$$

$$\Rightarrow p_2 = 11$$

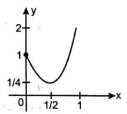
$$\Rightarrow f(x) = x^2 - 13x + 22$$

$$\lambda = f(x)_{\min} = -\frac{81}{4}$$

20.
$$f'(x) = \lim_{x \to 0} \frac{f(x) - f\left(\frac{x}{7}\right)}{x - \frac{x}{7}} = \frac{1}{6}$$

$$\Rightarrow f(x) = \frac{x}{6} + 1 \Rightarrow f(42) = 8$$

21.
$$g(x) = f(x)$$
 $0 \le x < \frac{1}{2}$
= $\frac{1}{4}$ $\frac{1}{2} \le x \le 1$
= $3 - x$ $1 < x \le 2$



22.
$$x = \frac{10}{4} \sum_{r=3}^{100} \left(\frac{1}{r-2} - \frac{1}{r+2} \right) = \frac{10}{4} \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} - \frac{1}{102} - \frac{1}{101} - \frac{1}{100} - \frac{1}{99} \right)$$

$$= 5 \times 49 \left(\frac{1}{99} + \frac{1}{200} + \frac{1}{303} + \frac{1}{408} \right)$$

23. f(x) = x has two real roots.

$$cx^{2} + (d-a)x - b = 0$$

$$\frac{a-d}{c} = 18 \text{ and } \frac{-b}{c} = 77$$

if
$$f(f(x)) = x \forall x \in R$$
 $\Rightarrow (ac + cd)x^2 + (d^2 - a^2)x - (a + d)b = 0$
 $\Rightarrow a + d = 0 \Rightarrow a = -d$

f(x) will not attain the value $\frac{a}{c} = 9$.

24.
$$A = (1,3)$$

 $p \le -2^{1-1}$, $p \le -2^{1-3}$
 $1-2(p+7)+5 \le 0$ and $9-6(p+7)+5 \le 0 \Rightarrow p \in [-4,-1]$

Function 27

25.
$$y = \frac{x - \frac{1}{x}}{x^3 - \frac{1}{x^3} + 2}$$
 Let $t = x - \frac{1}{x} > 0$ for $x > 1$

$$y = \frac{t}{t(t^2 + 3) + 2}$$
 $x^3 - \frac{1}{x^3} = t(t^2 + 3)$

$$= \frac{t}{t^3 + 3t + 2}$$

$$= \frac{1}{t^2 + \frac{2}{t} + 3}$$
 $\left(t^2 + \frac{2}{t} = t^2 + \frac{1}{t} + \frac{1}{t} \ge 3\right)$

$$\therefore t^2 + \frac{2}{t} + 3 \ge 6 \text{ (AM } \ge \text{ GM)}$$

$$y_{\text{max}} = \frac{1}{\left(t^2 + \frac{2}{t} + 3\right)_{\text{min}}} = \frac{1}{6}$$

$$p = 1, q = 6$$

28.
$$a + ar + ar^2 = 1$$

 $a^2r + a^2r^2 + a^2r^3 = \beta = ar(a + ar + ar^2) = ar$
 $a^3r^3 = -\gamma$

29.
$$m = {}^{6}C_{4} \times 1 = 15$$

$$n = \frac{6!}{3!1!1!1!3!} \times 4! + \frac{6!}{(2!)^{4}} \times 4! = 1560$$

30.
$$\sum_{r=1}^{n} [\log_2 r] = 0 + 1 + 1 + (2 + 2 + 2 + 2) + \underbrace{(3 + 3 + \dots + 3)}_{\text{8 times}} + \dots$$

$$=2 \cdot 1 + 4 \cdot 2 + 8 \cdot 3 + ... +$$

$$|(x-2y)(y+x)(x+3y)| = f(x, y)$$

No rain, then f(x, y) = 0 hence 3 lines.

33. Cubic =
$$(x^2 - 5x + 6)(x + \alpha) + 2(Bx + 100 - 4\alpha)$$

$$(x^2-5x+4)(x+\alpha)+Bx+100-4\alpha$$

Both identical B = -2

$$\alpha = 50$$

Cubic =
$$(x^2 - 5x + 6)(x + 50) - 4x - 200$$

Solution of Advanced Problems in Mathematics for JEE

34.
$$f(\theta) = 0 \implies \theta = -5 \pm \sqrt{5}$$

 $\implies f(f(f(x))) = -5 \pm \sqrt{5}$
Since $f(x) = (x+5)^2 - 5$
 $f(f(f(x))) = -5 \pm \sqrt{5}$
 $((f(f(f(x)))) + 5)^2 = -5 \pm \sqrt{5}$
 $(f(f) + 5)^2 = \sqrt{5}$
 $f(f) + 5 = \pm 5^{1/4}$
 $f(f) = -5 \pm 5^{1/4}$
 $(f+5)^2 - 5 = -5 \pm 5^{1/4}$
 $(f+5)^2 = 5^{1/4}$
 $f+5 = \pm 5^{1/8}$

35. Let
$$\ln x = t$$

$$y = \frac{2t^2 + 3t + 3}{t^2 + 2t + 2} \Rightarrow (y - 2)t^2 + (2y - 3)t + (2y - 3) > 0$$
$$D \ge 0 \Rightarrow (2y - 3)(2y - 5) \le 0 \Rightarrow \frac{3}{2} \le y < \frac{5}{2}$$

36.
$$P(x) = (x-3)Q_1(x) + 6 \Rightarrow P(3) = 6$$

 $P(x) = (x^2 - 9)Q(x) + (ax + b)$

$$P(3) = 3a + b = 6$$

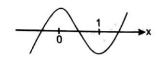
If equation of odd degree polynomial, then b = 0, a = 2.

37.
$$f(x) = 2x^3 - 3x^2 + P$$

 $f'(x) = 6x^2 - 6x = 6x(x - 1)$
 $f(0) \ge 0 \cap f(1) \le 0$
 $\Rightarrow P \ge 0 \cap P - 1 \le 0$

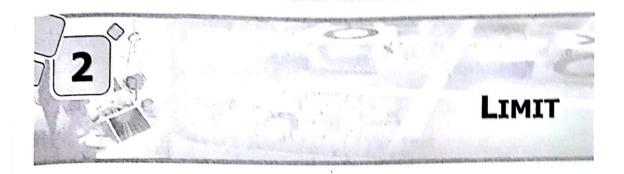
38.
$$f(x) = \frac{1}{\sqrt{\ln(\cos^{-1} x)}}$$

 $\ln(\cos^{-1} x) > 0 \Rightarrow \cos^{-1} x > 1$



...(1)

Chapter 2 - Limit



Exercise-1 : Single Choice Problems

1.
$$\lim_{x \to 0} \frac{2\sin\left(\frac{x - \tan x}{2}\right)\sin\left(\frac{\tan x + x}{2}\right)}{\left(\frac{x - \tan x}{2}\right)\left(\frac{\tan x + x}{2}\right)} \times \left(\frac{x - \tan x}{x^3}\right)\left(\frac{x + \tan x}{x}\right) \times \frac{1}{4}$$

$$=\frac{1}{2}\times\left(-\frac{1}{3}\right)\cdot 2=-\frac{1}{3}$$

(use expansions)

3.
$$a = \lim_{x \to 0} \left(\frac{\ln(1 + \cos 2x - 1)}{\cos 2x - 1} \right) \frac{(\cos 2x - 1)}{3x^2} = -\frac{2}{3}$$

$$b = \lim_{x \to 0} \left(\frac{\sin^2 2x}{4x^2} \right) \frac{4x^2}{x^2 \left(\frac{1 - e^x}{x} \right)} = -4$$

$$c = \lim_{x \to 1} \frac{\sqrt{x}(1-x)}{\left(\frac{\ln(1+x-1)}{x-1}\right)(x-1)(\sqrt{x}+1)} = \frac{-1}{2}$$

4.
$$f(x) = \frac{\pi}{2} - 3 \tan^{-1} x$$

$$g(x) = 2 \tan^{-1} x$$

$$\lim_{x \to 0} \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(a)}{g'(a)} = -\frac{3}{2}$$

5.
$$\lim_{x \to 0} \left(e^{\frac{2}{x} \ln(1+x) - 2} \right)^{\frac{4}{\sin x}} = \lim_{x \to 0} \frac{4}{\sin x} \left(e^{2\left(\frac{\ln(1+x)}{x} - 1\right)} - 1 \right)$$

$$= \lim_{x \to 0} \frac{4}{\sin x} \left(\frac{e^{2\left(\frac{\ln(1+x)}{x} - 1\right)} - 1}{2\left(\frac{\ln(1+x)}{x} - 1\right)} \right) \times 2\left[\frac{\ln(1+x)}{x} - 1\right]$$

$$= e$$

$$\lim_{x \to 0} 8 \left(\frac{x - \frac{x^2}{2} + \dots}{x} - 1 \right) \times \frac{1}{\sin x}$$

$$= e$$

$$= e^{\frac{8}{2}} = e^{-4}$$

6.
$$\lim_{x \to \infty} \frac{3}{x} \left(\frac{x}{4} - \left\{ \frac{x}{4} \right\} \right) = \frac{3}{4} - 0 = \frac{3}{4}$$

$$7. f(x) = \lim_{n \to \infty} \frac{x \left(1 + \left(\frac{\pi}{3x}\right)^n\right)}{1 + \left(\frac{\pi}{3x}\right)^{n-1}} = x; x > \frac{\pi}{3}$$

$$= \lim_{n \to \infty} \frac{\frac{\pi}{3} \left(\left(\frac{3x}{\pi} \right)^n + 1 \right)}{\left(\left(\frac{3x}{\pi} \right)^{n-1} + 1 \right)} = \frac{\pi}{3}; x < \frac{\pi}{3}$$

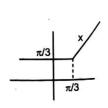
$$= \frac{\pi}{3} \qquad x = \frac{\pi}{3}$$

$$f(x) = x; x \ge \frac{\pi}{3}$$
$$= \frac{\pi}{3}; x < \frac{\pi}{3}$$

Option (d) is wrong.

8.
$$\lim_{x \to 0} \frac{\sin(\pi - \pi \cos^2(\tan(\sin x)))}{x^2} = \lim_{x \to 0} \frac{\sin[\pi \sin^2(\tan(\sin x))]}{\pi \sin^2(\tan(\sin x))} \times \pi \left(\frac{\sin(\tan(\sin x))}{x}\right)^2 = \pi$$

9.
$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) \Rightarrow \lim_{x \to 3^{-}} \frac{(27)^{\frac{(x+3)x}{27}} - 9}{3^{x} - 27} = \lim_{x \to 3^{+}} \lambda \frac{1 - \cos(x-3)}{(x-3)^{2}}$$



Limit 31

$$\Rightarrow \lim_{x \to 3^{-}} \frac{3^{2} \left(3^{\frac{x^{2}+3x}{9}}-2\right)}{3^{3}(3^{x-3}-1)} = \frac{\lambda}{2}$$

$$\Rightarrow \lim_{x \to 3} \frac{1}{3} \frac{x^{2}+3x-18}{9(x-3)} = \frac{\lambda}{2} \Rightarrow \frac{1}{27} \cdot 9 = \frac{\lambda}{2} \Rightarrow \lambda = \frac{2}{3}$$

$$2 \sin \left(\frac{\pi}{3} - x\right) \cos \left(\frac{\pi}{3} - x\right) = \lim_{x \to \frac{\pi}{3}} \frac{\sin \left(\frac{\pi}{3} - x\right) \cos \left(\frac{\pi}{3} - x\right)}{2 \sin \left(\frac{\pi}{3} - x\right) \sin \left(\frac{\pi}{3} + x\right)}$$

$$= \frac{1}{2} \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

11.
$$\lim_{x \to \frac{\pi}{2}} \frac{\sin x}{\cos^{-1}[\sin^3 x]} \implies \frac{\sin \frac{\pi}{2}}{\cos^{-1}(0)} = \frac{1}{\pi/2} = \frac{2}{\pi}$$

13.
$$\lim_{x \to I^{-}} \{x\} = \lim_{x \to I^{-}} x - [x] = 1; \quad \lim_{x \to I^{-}} \frac{e^{\{x\}} - \{x\} - 1}{\{x\}^{2}} = e - 2$$

16.
$$\lim_{x \to \infty} x \left[x^{5c-1} \left(1 + \frac{7}{x} + \frac{2}{x^5} \right)^c - 1 \right] = l$$

Case-I: 5c-1>0, then $l\to\infty$

Case-II: 5c-1<0, then $l \to -\infty$

Since limit is finite and non-zero so $5c - 1 = 0 \implies c = \frac{1}{5}$

$$\lambda = \lim_{x \to \infty} x \left[\left(1 + \frac{7}{x} + \frac{2}{x^5} \right)^{1/5} - 1 \right]$$

$$= \lim_{x \to \infty} x \left[1 + \left(\frac{1}{5} \right) \left(\frac{7}{x} + \frac{2}{x^5} \right) + \dots - 1 \right]$$

$$= \frac{7}{5}$$

(by binomial approximation)

17.
$$\lim_{x\to 0} \frac{\cos x - 1}{x^2} \left(\frac{\cos x - 1}{x^{n-2}} - \frac{(e^x - 1)}{x^{n-2}} \right) = 0 \Rightarrow n = 1, 2, 3$$

18.
$$1^{\infty}$$
 (form) = $e^{\lim_{x\to 0} \frac{1}{1-\cos x} \left(\frac{\sin x - x}{x} \right)} = e^{2 \times -1/6} = e^{-1/3}$

19.
$$\lim_{x\to\infty} [\sqrt{x^2-x+1}-(ax+b)]=0$$

So a > 0, on rationalizing

$$\lim_{x \to \infty} \left[\frac{(x^2 - x + 1) - [a^2 x^2 + b^2 + (2ab)x]}{\sqrt{x^2 - x + 1} + ax + b} \right] = 0$$

So,
$$1-a^2=0$$
 $-1-2ab=0$

$$a = 1$$

$$\lim_{n \to \infty} \sec^2 [k! \pi (-1/2)] = 1 = a$$

20.
$$f(x+T) = f(x+2T) = \dots = f(x+nT) = f(x)$$

$$\lim_{n\to\infty} \frac{nf(x)(1+2+3+...+n)}{f(x)(1+2^2+3^2+...+n^2)} = \lim_{n\to\infty} \frac{n\left(\frac{n(n+1)}{2}\right)}{\frac{n(n+1)(2n+1)}{6}} = \frac{3}{2}$$

21. 265
$$\left[\lim_{h \to 0} \frac{h^2 + 3}{\left(\frac{f(1-h) - f(1)}{-h}\right)\left(\frac{\sin 5h}{h}\right)}\right] = -265 \times \frac{3}{f'(1) \cdot 5} = -\frac{53 \times 3}{f'(1)}$$
$$= -\frac{53 \times 3}{-53} \qquad [\because f'(1) = -53]$$
$$= 3$$

22.
$$\lim_{x \to 0} \frac{\cos^2 x - 1}{\cos x \cdot x^2 \cdot (x+1)}$$
$$\lim_{x \to 0} -\left(\frac{\sin^2 x}{x^2}\right) \frac{-1}{\cos x(x+1)} = -1$$

23.
$$f(x+y) = f(x) \cdot f(y)$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h} = f(x) \left(\lim_{h \to 0} \frac{f(h) - 1}{h} \right)$$

If
$$f(h) = 1 + hP(h) + h^2Q(h) \Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{hP(h) + h^2Q(h)}{h} = P(0)f(x)$$

Limit 33

24.
$$\lim_{x \to \frac{\pi}{2}} \frac{\left(1 - \tan\frac{x}{2}\right)(1 - \sin x)}{\left(1 + \tan\frac{x}{2}\right)(\pi - 2x)^3}$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{\tan\left(\frac{\pi}{4} - \frac{x}{2}\right)\left(1 - \cos\left(\frac{\pi}{2} - x\right)\right)}{(\pi - 2x)^3}$$

Let
$$x = \frac{\pi}{2} + h$$

$$\lim_{x \to 0} \frac{\tan\left(-\frac{h}{2}\right)(1 - \cos h)}{(-2h)^3} = \frac{1}{32}$$

25.
$$\lim_{x \to \infty} \left(\frac{x-3}{x+2} \right)^x = e^{\lim_{x \to \infty} x \left(\frac{-5}{x+2} \right)} = e^{-5}$$

27.
$$\ln c = I$$
, $(I \in \text{integer})$
 $\Rightarrow c = e^{I}$
 $c \text{ is rational when } I = 0$

28.
$$\lim_{x \to 0} \left(1 + \frac{a \sin bx}{\cos x} \right)^{1/x} = e^{\lim_{x \to 0} \frac{1}{x} \left[1 + \frac{a \sin bx}{\cos x} - 1 \right]} = e^{ab}$$

30.
$$a = \lim_{x \to 1} \left(\frac{x}{\ln x} - \frac{1}{x \ln x} \right) = \lim_{x \to 1} \frac{x^2 - 1}{x \ln x} = \lim_{x \to 1} \frac{x + 1}{x} \cdot \frac{x - 1}{\ln x} = 2$$

$$b = -4$$
, $c = 1$, $d = -2$

33. Let
$$\sin^{-1} x = 0$$

$$\Rightarrow \lim_{\theta \to \frac{\pi^{+}}{4}} \frac{\cos^{-1} \sin 2\theta}{\sin \theta - \sin \frac{\pi}{4}} = \lim_{\theta \to \frac{\pi^{+}}{4}} \frac{2 \sin \left(\frac{\theta - \frac{\pi}{4}}{2}\right) \cos \left(\frac{\theta + \frac{\pi}{4}}{2}\right)}{2 \sin \left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{4}\right)} = 2\sqrt{2}$$

$$\lim_{\theta \to \frac{\pi}{4}^{-}} \frac{\cos^{-1} \sin 2\theta}{\sin \theta - \sin \frac{\pi}{4}} = -2\sqrt{2}$$

34.
$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\sin \frac{\pi}{2k} - \sin \frac{\pi}{2(k+2)} \right) + \lim_{n \to \infty} \sum_{k=1}^{n} \left(\cos \frac{\pi}{2(k+2)} - \cos \frac{\pi}{2k} \right)$$

$$= \lim_{n \to \infty} \left(\sin \frac{\pi}{2} - \sin \frac{\pi}{6} + \sin \frac{\pi}{4} - \sin \frac{\pi}{8} + \sin \frac{\pi}{6} - \sin \frac{\pi}{10} + \dots + \sin \frac{\pi}{2n} - \sin \frac{\pi}{2(n+2)} \right)$$

$$+ \lim_{n \to \infty} \left(\cos \frac{\pi}{6} - \cos \frac{\pi}{2} + \cos \frac{\pi}{8} - \cos \frac{\pi}{4} + \cos \frac{\pi}{10} - \cos \frac{\pi}{6} + \dots + \cos \frac{\pi}{2(n+2)} - \cos \frac{\pi}{2n} \right)$$

$$= 1 + \frac{1}{\sqrt{2}} + 2 - \frac{1}{\sqrt{2}} = 3$$

$$=1+\frac{1}{\sqrt{2}}+2-\frac{1}{\sqrt{2}}=3$$

$$36. \lim_{x\to 0}\frac{(\cos x)^{\frac{1}{m}-\frac{1}{n}}-1}{x^2}=\lim_{x\to 0}\frac{\left(1-2\sin^2\frac{x}{2}\right)^{\frac{1}{m}-\frac{1}{n}}-1}{x^2}$$

$$= \lim_{x \to 0} -2\left(\frac{1}{m} - \frac{1}{n}\right) \frac{\sin^2 \frac{x}{2}}{x^2} = \frac{m - n}{2mn}$$

37.
$$\lim_{x\to 0} \frac{x + xa\cos x - b\sin x}{x^3} = 1$$

Using expansion,

$$\Rightarrow \lim_{x \to 0} \frac{x + xa\left(1 - \frac{x^2}{2!}\right) - b\left(x - \frac{x^3}{3!}\right)}{x^3} \Rightarrow \lim_{x \to 0} \frac{x + ax - \frac{ax^3}{2!} - bx + \frac{bx^3}{3!}}{x^3}$$

Clearly,
$$1 + a - b = 0$$
 for limit to be finite

$$\Rightarrow \lim_{x \to 0} \left(\frac{b}{3!} - \frac{a}{2!} \right) \frac{x^3}{x^3} = 1 \Rightarrow \frac{b}{6} - \frac{a}{2} = 1 \Rightarrow b - 3a = 6 \qquad \dots (2)$$

⇒ From (1) and (2),
$$a = -\frac{5}{2}, b = -\frac{3}{2}$$

38.
$$\lim_{x \to 0} \frac{a \cos ax - \frac{e^x(\cos x - \sin x)}{e^x \cdot \cos x}}{\sin bx + bx \cdot \cos bx} = \frac{1}{2}$$

$$\Rightarrow \lim_{x \to 0} \frac{\cos^2 x - \cos x + \sin x}{\cos x (\sin bx + bx \cos bx)} = \frac{1}{2} \qquad (\because a = 1)$$

39.
$$\alpha = \lim_{n \to \infty} \frac{(1^3 + 2^3 + 3^3 \dots + n^3) - (1^2 + 2^2 \dots + n^2)}{n^4} = \lim_{n \to \infty} \frac{\left(\frac{n(n+1)}{2}\right)^2 - \frac{n(2n+1)(n+1)}{6}}{n^4}$$

$$\Rightarrow \lim_{n \to \infty} \left[\frac{1}{4} \left(1 + \frac{1}{n} \right)^2 - \frac{(2n+1)(n+1)}{6n^3} \right] = \frac{1}{4}$$

$$40. \lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{x^4} \Rightarrow \lim_{x \to 0} \frac{2\sin\left(\frac{\sin x + x}{2}\right)\sin\left(\frac{x - \sin x}{2}\right)}{x^4}$$

$$\Rightarrow \lim_{x \to 0} \frac{2}{x^4} \frac{(\sin x + x)}{2} \cdot \frac{(x - \sin x)}{2} \qquad \left\{ \because \frac{\sin x + x}{2} \to 0; \frac{x - \sin x}{2} \to 0 \right\}$$

$$\Rightarrow \lim_{x \to 0} \frac{1}{2} \left(1 + \frac{\sin x}{x} \right) \left(\frac{x - \sin x}{x^3} \right) \Rightarrow \frac{1}{6}$$

42.
$$u_n = \frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n}$$
 ... (1)

$$\frac{1}{2}u_n = \dots + \frac{1}{2^2} + \frac{2}{2^3} \dots + \frac{n-1}{2^n} + \frac{n}{2^{n+1}}$$
 incitules starred \(\text{...(2)}\)

Substracting equation (1) and (2),

$$\frac{u_n}{2} = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} - \frac{n}{2^{n+1}} \Rightarrow \frac{u_n}{2} = \frac{\frac{1}{2} \left(1 - \frac{1}{2^n}\right)}{\left(1 - \frac{1}{2}\right)} - \frac{n}{2^{n+1}}$$

$$\Rightarrow u_n = 2\left(1 - \frac{1}{2^n}\right) - \frac{n}{2^{n+1}}; \lim_{n \to 0} u_n = 2$$

43.
$$e^{\lim_{x\to 0} \frac{(\cos x - 1)}{\sin^2 x}} + \lim_{x\to 0} \frac{\frac{\sin 2x}{2x} \cdot 2x + 6x \cdot \frac{\tan^{-1} 3x}{3x} + 3x^2}{\frac{\ln(1 + 3x + \sin^2 x)}{3x + \sin^2 x} \cdot (3x + \sin^2 x) + xe^x} = \frac{1}{\sqrt{e}} + 2$$

44.
$$\tan \frac{x}{2}(1 + \sec x) = \tan x$$

$$f_n(x) = \tan \frac{x}{2} (1 + \sec x) (1 + \sec 2x) ... (1 + \sec 2^n x) = \tan 2^n x$$

$$f_n(x) = \tan \frac{x}{2} (1 + \sec x) (1 + \sec 2x) \dots (1 + \sec 2^n x) = \tan 2^n x$$

$$45. \lim_{x \to \frac{\pi}{4}} (1 + [x])^{\frac{1}{\ln(\tan x)}} = \lim_{x \to \frac{\pi}{4}} (1)^{\frac{1}{\ln(\tan x)}} = 1$$

45.
$$\lim_{x \to \frac{\pi}{4}} (1 + [x]) = \lim_{x \to \frac{\pi}{4}} (1)$$

46. $\lim_{x \to 0} \frac{\{(a-n)nx - \tan x\} \sin nx}{x^2} xn = 0$

$$\Rightarrow \qquad \{(a-n)n-1\}n=0 \Rightarrow a=n+\frac{1}{n}$$

47. $y = \lim_{n \to \infty} \left(\frac{n!}{n^n} \right)^{\frac{3n^3 + 4}{4n^4 - 1}}$

$$\ln y = \lim_{n \to \infty} \frac{3n^3 + 4}{4n^4 - 1} \sum_{r=1}^{n} \ln \left(\frac{r}{n} \right) = \frac{3}{4} \int_{0}^{1} \ln x \, dx = \frac{-3}{4} \implies y = e^{-3/4}$$

www.jeebooks.in

48.
$$\lim_{x \to \infty} \frac{ax^2 + bx + c}{dx + e} = \lim_{x \to \infty} \frac{ax + b + (c/x)}{d + (e/x)} = \lim_{x \to \infty} \left(\frac{a}{d}x + \frac{b}{d}\right)$$
$$= +\infty \text{ if } \left(\frac{a}{d}\right) \text{ is positive.}$$
$$= -\infty \text{ if } \left(\frac{a}{d}\right) \text{ is negative.}$$

Alternate solution:

$$\lim_{x \to \infty} \frac{ax^2 + bx + c}{dx + e} = \lim_{x \to \infty} \frac{a + (b/x) + (c/x^2)}{(d/x) + (e/x^2)}$$

Here $\frac{e}{x^2} \ll \frac{d}{x}$. Therefore,

$$\lim_{x \to \infty} \frac{ax^2 + bx + c}{dx + e} = \lim_{x \to \infty} \frac{a}{d/x}$$

$$= \begin{cases} \frac{a}{0^+} & \text{if } d > 0 \\ -\infty & \text{if } a < 0 \text{ and } d > 0 \end{cases}$$

$$= \begin{cases} \frac{a}{0^+} & \text{if } d > 0 \\ -\infty & \text{if } a < 0 \text{ and } d < 0 \end{cases}$$

$$= \begin{cases} \frac{a}{0^+} & \text{if } d < 0 \\ +\infty & \text{if } a < 0 \text{ and } d < 0 \end{cases}$$

49.
$$f(x) = \lim_{n \to \infty} \tan^{-1} \left(4n^2 \cdot 2 \sin^2 \frac{x}{2n} \right) = \lim_{n \to \infty} \tan^{-1} \left(8n^2 \left(\frac{\sin \frac{x}{2n}}{\frac{x}{2n}} \right)^2 \cdot \frac{x^2}{4n^2} \right) = \tan^{-1} (2x^2)$$

$$g(x) = \lim_{n \to \infty} \frac{n^2}{2} \left(\frac{\ln\left(1 + \cos^2\frac{2x}{n} - 1\right)}{\cos^2\frac{2x}{n} - 1} \right) \left(\cos\frac{2x}{n} - 1\right) = x^2$$

50.
$$\lim_{x\to 0} \frac{\sin^2 x}{f(x)} = \frac{1}{3} \Rightarrow f(x) = x^2(ax+3); \quad a \neq 0$$

51.
$$\lim_{x \to 0} \frac{(2e^{2\sin x} - e^{\sin x} - 1)}{(x^2 + 2x)e^{\sin x}} = \lim_{x \to 0} \frac{(2e^{\sin x} + 1)(e^{\sin x} - 1)}{x(x + 2)e^{\sin x}} = \frac{3}{2}$$

Limit 37

52.
$$x^n + ax + b = (x - x_1)(x - x_2)(x - x_3)...(x - x_n)$$

$$\lim_{x \to x_1} \frac{x^n + ax + b}{x - x_1} = (x_1 - x_2)(x_1 - x_3)...(x_1 - x_n)$$

53.
$$\lim_{x \to 0} \frac{\left(1 + \frac{1}{3}\sin^2 x + \dots\right) - \left(1 - \frac{1}{4}(2\tan x) + \dots\right)}{\sin x + \tan^2 x} = \frac{1}{2}$$

54.
$$\lim_{x \to 0} \frac{f(x)}{x^2} = \lim_{x \to 0} \begin{vmatrix} \cos x & \frac{2\sin x}{x} & \tan x \\ 1 & 1 & 1 \\ 1 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 1 \end{vmatrix} = -1$$

Exercise-2: One or More than One Answer is/are Correct

$$\lim_{p \to 0} \frac{1}{3x^2} (p \tan qx^2 - 3\cos^2 x + 3)$$

$$e^{\lim_{x\to 0} \frac{pq}{3} + \frac{3(1-\cos^2 x)}{3x^2}}$$

$$\Rightarrow \frac{pq}{3} + 1 = \frac{5}{3}; \qquad pq = 2$$

3. $a \ge e > 2$

(a)
$$L = a \lim_{x \to \infty} \left(1 + \left(\frac{2}{a} \right)^x + \left(\frac{e}{a} \right)^x \right)^{1/x}$$

 $\therefore \quad x \to a, \left(\frac{2}{a} \right) \to 0, \left(\frac{e}{a} \right) \to 0, \frac{1}{x} \to 0$

So,
$$L=a$$

(b) If a = 2e > 2

$$L = \lim_{x \to \infty} (2^{x} + (2e)^{x} + e^{x})^{1/x} = 2e \lim_{x \to \infty} \left[\left(\frac{1}{e} \right)^{x} + 1 + \left(\frac{1}{2} \right)^{x} \right]^{1/x} = 2e(1) = 2e$$

(c) If $0 < a \le e$

$$L = e \left(\lim_{x \to \infty} \left(\left(\frac{2}{e} \right)^x + \left(\frac{a}{e} \right)^x + 1 \right)^{1/x} \right) = e$$

(d) $a > \frac{e}{2} > 1$ $L = \lim_{x \to \infty} \left[2^x + \left(\frac{2a}{2} \right)^x + e^x \right]^{1/x} = 2a \lim_{x \to \infty} \left(\left(\frac{1}{a} \right)^x + \left(\frac{1}{2} \right)^x + \left(\frac{e}{2a} \right)^x \right)^{1/x} = 0$

www.jeebooks.in

- 5. $f(x) = \cos(\sin x)$ Range is [cos 1, 1].
- **8.** $f(x) = x \left(\frac{3}{2} + \frac{3}{2} [\cos x] \right)$
- 9. If $x \neq \frac{1}{2^{2^n}}$ then f(x) = 0 but if $x = \frac{1}{2^{2^n}}$ then $\lim_{x \to 0} f(x) = \lim_{n \to \infty} (-1)^n$, hence does not exist.

Also, if
$$x = \frac{1}{2^{2^n}}$$
 then $2x \neq \frac{1}{2^{2^n}} \implies f(2x) = 0$

11.
$$\lim_{x \to 0^{+}} \frac{\cos^{-1}(1-x)\sin^{-1}(1-x)}{\sqrt{2x}(1-x)} = \lim_{x \to 0^{+}} \frac{\left(\frac{\sin^{-1}\sqrt{2x-x^{2}}}{\sqrt{2x-x^{2}}}\right)\sqrt{2x-x^{2}} \cdot \sin^{-1}(1-x)}{\sqrt{2x}(1-x)} = \frac{\pi}{2}$$

$$\lim_{x\to 0^{-}} \frac{\cos^{-1}(-x)\sin^{-1}(-x)}{\sqrt{2(x+1)}(-x)} = \frac{\pi}{2\sqrt{2}}$$

12.
$$\lim_{x\to 0} \frac{2\sin\left(\frac{\sin x - x}{2}\right) \cdot \cos\left(\frac{\sin x + x}{2}\right)}{ax^3 + bx^5 + c} = \frac{-1}{12}$$

$$\lim_{x \to 0} \frac{2 \left(\frac{\sin\left(\frac{\sin x - x}{2}\right)}{\frac{\sin x - x}{2}} \right) \left(\frac{\sin x - x}{2}\right) \cdot \cos\left(\frac{\sin x + x}{2}\right)}{ax^3 + bx^5 + c} = \frac{-1}{12}$$

$$14. \cos^2\left(n\pi+\frac{\pi}{3}\right)$$

15.
$$\sin \alpha + \sin \beta = -\frac{\sin \beta}{\sin \alpha} \Rightarrow \sin \alpha = \sin \beta = -\frac{1}{2}$$

16.
$$\lim_{x \to 2^{+}} [5 - 2x] = 0$$

 $\lim_{x \to 2^{-}} [|x - 2| + a^{2} - 6a + 9] = 0 \Rightarrow (a - 3)^{2} < 1$

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

1.
$$S_1 = 1, S_2 = 7, S_3 = 19$$

 $\Rightarrow S_n = 1 + 3n(n-1)$
 $\lim_{n \to \infty} \frac{S_n}{n^2} = 3$

2.
$$r_1 = 1, r_2 = \frac{1}{3}, r_3 = \frac{1}{5}$$

or $r_n = \frac{1}{2n-1}$

$$\lim_{n \to \infty} n \times \frac{1}{2n-1} = \frac{1}{2}$$

Paragraph for Question Nos. 3 to 4

3.
$$x > 0$$
, $x < \tan x$
 $x < 0$, $x > \tan x \Rightarrow x - \tan x > 0$
 $\therefore [x - \tan x] = 0$
 $\therefore \lim_{x \to 0^{-}} f([x - \tan x]) = f(0) = 4$

4.
$$x > 0$$
 $x < \tan x$

$$\frac{x}{\tan x} < 1$$

$$\lim_{x \to 0^+} \left\{ \frac{x}{\tan x} \right\} = \frac{x}{\tan x} \to 1^-$$

$$\therefore \lim_{x \to 0^+} \left(f \left\{ \frac{x}{\tan x} \right\} \right) = \lim_{x \to 0^+} f \left(\frac{x}{\tan x} \right) = f(1^-) = 2 + 5 = 7$$

Paragraph for Question Nos. 5 to 6

5.
$$f(x) = 1 - |x - 2|$$

 $x \to 2^+, f(x) \to 1^- \text{ and } x \to 2^-, f(x) \to 1^-$
R.H.L. = $\lim_{x \to 2^+} (f(x))^{\frac{1}{\sin(\frac{\pi x}{2})}} = e^{\lim_{x \to 2^+} \frac{f(x) - 1}{\sin(\frac{\pi x}{2})}}$

$$= e^{\lim_{x \to 2^{+}} \frac{1 - (x - 2) - 1}{\sin \pi \left(1 - \frac{x}{2}\right)}} = e^{\lim_{x \to 2^{+}} \frac{(x - 2)}{\left(\frac{\sin \frac{\pi}{2}(2 - x)}{\frac{\pi}{2}(2 - x)}\right)} \times \frac{\pi}{2}(2 - x)$$

L.H.L. =
$$\lim_{x \to 2^{-}} (f(x))^{\frac{1}{\sin x} \left(\frac{\pi x}{2}\right)} = e^{\lim_{x \to 2^{-}} \frac{f(x)}{\sin \left(\frac{\pi x}{2}\right)}}$$

= $e^{\lim_{x \to 2^{-}} \frac{1 + (x - 2) - 1}{\sin \frac{\pi}{2}(2 - x)} = e^{\lim_{x \to 2^{-}} \frac{x - 2}{\frac{\pi}{2}(2 - x)}$

$$=e^{-2/\pi}$$

Limit does not exist.

6. [1,3]

as
$$f(3x) = \alpha f(x)$$

$$x \in [1,3]$$
 ;

$$f(x) \in [0,1]$$

$$3x \in [3, 9]$$

$$3x \in [3,9]$$
; $f(3x) = \alpha f(x) \in [0,\alpha]$

$$9x \in [9, 27]$$

$$9x \in [9, 27]$$
; $f(9x) = \alpha f(3x) \in [0, \alpha^2]$

area between [1, 3] is
$$\Delta_1 = \frac{1}{2} \times 2 \times 1 = 1$$

area between [3, 9] is
$$\Delta_2 = \frac{1}{2} \times 6 \times \alpha = 3\alpha$$

area between [9, 27] is
$$\Delta_3 = \frac{1}{2} \times 18 \times \alpha^2 = 9\alpha^2$$

$$\therefore$$
 1,3 α ,9 α^2 ,..... is converges when (g.p.) $|3\alpha| < 1$ $\alpha \in \left(-\frac{1}{3}, \frac{1}{3}\right)$

Paragraph for Question Nos. 7 to 9

7.
$$\lim_{x \to 0} \frac{\left[(1+bx) - (1+ax)\sqrt{1+x} \right]}{x^3} = \lim_{x \to 0} \frac{(1+bx) - (1+ax)\left(1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16}\right)}{x^3}$$
$$= \lim_{x \to 0} \frac{bx - \frac{x}{2} + \frac{x^2}{8} - \frac{x^3}{16} - ax - \frac{ax^2}{2} + \frac{ax^3}{8}}{x^3}$$

imit

$$\Rightarrow$$
 coefficient of x and $x^2 = 0 \Rightarrow b - a = \frac{1}{2}$ and $\frac{a}{2} = \frac{1}{8}$

$$\Rightarrow a = \frac{1}{4}, b = \frac{3}{4}$$

8.
$$a+b=1$$

9.
$$l = -\frac{1}{32}$$
; $b = \frac{3}{4}$

Paragraph for Question Nos. 10 to 11

Sol.
$$\sin x + \sin y = 1$$

$$y' = \frac{-\cos x}{\sqrt{2\sin x - \sin^2 x}}$$

$$\Rightarrow \qquad y'' = \frac{\sin^2 x - \sin x + 1}{(2\sin x - \sin^2 x)^{3/2}}$$

Exercise-5: Subjective Type Problems

1.
$$\lim_{x \to 0} -\frac{\ln \tan\left(\frac{\pi}{4} - \beta x\right)}{\tan \alpha x} = -\lim_{x \to 0} \frac{\ln\left[\left(\frac{1 - \tan \beta x}{1 + \tan \beta x} - 1\right) + 1\right]}{\tan \alpha x}$$

$$=-1\left(-2\frac{\beta}{\alpha}\right)=1$$

$$\Rightarrow \frac{\alpha}{\beta} = 2$$

3.
$$a(x^3-1)+(x-1)=0$$

$$(x-1)(ax^2 + ax + a + 1) = 0$$

$$\alpha, \beta \neq 1$$
 so, α, β are roots of $ax^2 + ax + a + 1 = 0$

$$\alpha + \beta = -1$$
, $\alpha\beta = \frac{a+1}{a}$

$$\lim_{x \to \frac{1}{\alpha}} \frac{(1+a)x^3 - x^2 - a}{(e^{1-\alpha x} - 1)(x - 1)} = \lim_{x \to \frac{1}{\alpha}} \frac{(x^3 - x^2) + a(x^3 - 1)}{(e^{1-\alpha x} - 1)(x - 1)}$$

$$= \lim_{x \to \frac{1}{\alpha}} \frac{[x^2 + a(x^2 + x + 1)]}{(e^{1-\alpha x} - 1)} = \lim_{x \to \frac{1}{\alpha}} \frac{(1+a)x^2 + ax + a}{\left(\frac{e^{1-\alpha x} - 1}{1 - \alpha x}\right)(1 - \alpha x)}$$

Solution of Advanced Problems in Mathematics for JEE

$$= \lim_{x \to \frac{1}{\alpha}} a \frac{\left[\left(\frac{1+a}{a} \right) x^2 + (1)x + 1 \right]}{(1-\alpha x)} = \lim_{x \to \frac{1}{\alpha}} a \frac{(\alpha \beta x^2 - (\alpha + \beta)x + 1)}{(1-\alpha x)}$$
$$= \lim_{x \to \frac{1}{\alpha}} a \frac{(1-(\alpha)x)(1-(\beta)x)}{(1-\alpha x)} = \frac{a(\alpha - \beta)}{\alpha}$$

4.
$$\lim_{x \to 0} \frac{(4^x - 1)(5^x - 1)(7^x - 1)}{x \sin^2 x} = 2 \ln 2 \ln 5 \ln 7$$

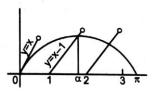
5.
$$\lim_{x \to 0} \frac{ax \cos x + b \sin x}{x^2 \sin x} = \frac{1}{3}$$

$$\lim_{x \to 0} \frac{ax \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} \dots\right) + b \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} \dots\right)}{x^2 \sin x} = \frac{1}{3}$$

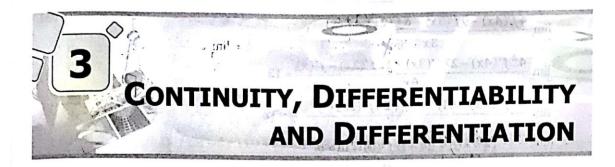
$$a + b = 0 \text{ and } -\frac{a}{2} - \frac{b}{6} = \frac{1}{3}$$

$$\Rightarrow$$
 $b=1$, $a=-1$

7.
$$\lim_{x\to\alpha^+} \left[\frac{\sin x}{x-1} \right] = 0$$



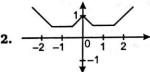
Chapter 3 - Continuity, Differentiability, and Differentiation



Exercise-1: Single Choice Problems

1.
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{f(x) + f(h) + 3hx(h+x) - f(x)}{h}$$

$$f'(x) = 3x^2 + f'(0) \implies f''(x) = 6x$$



f(x) is non-differentiable at five points.

3. $\frac{x}{5}$ is integer at 21 points in [0, 100]

 $\frac{x}{2}$ is integer at 51 points in [0, 100]

But when x is a multiple of 10 then f(x) is continuous.

So that respective points should be subtract from both i.e., multiple of 10 are 11 points in [0, 100].

$$21 + 51 - 11 - 11 = 72 - 22 = 50$$

4. f(x) has isolated point of discontinuity but |f(x)| is continuous at

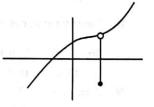
$$x = c$$

So, $\lim_{x\to a} f(x)$ and f(a) has opposite sign, with same magnitude.

So,
$$\lim_{x \to a} f(x) = -f(a)$$

 $\lim_{x \to a} f(x) + f(a) = 0$

5.
$$\lim_{x \to 0} \frac{f(4x) - 3f(3x) + 3f(2x) - f(x)}{x^3} = 12$$



Solution of Advanced Problems in Mathematics for JEL

$$\lim_{x\to 0} \frac{4f'(4x) - 9f'(3x) + 6f'(2x) - f'(x)}{3x^2} = 12$$

$$\lim_{x\to 0} \frac{4^2f'(4x) - 27f'(3x) + 12f'(2x) - f''(x)}{6x} = 12$$

$$\lim_{x\to 0} \frac{4^3f''(4x) - 81f''(3x) + 24f''(2x) - f''(x)}{6} = 12$$

$$\therefore (4^3 - 81 + 24 - 1)f''(0) = 12 \times 6$$

$$6f''(0) = 12 \times 6$$

$$f'''(0) = 12$$
6.
$$y = \frac{1}{1 + (\tan\theta)^{\sin\theta - \cos\theta} + (\tan\theta)^{\cot\theta - \cos\theta}} + \frac{1}{1 + (\tan\theta)^{\cos\theta - \sin\theta} + (\tan\theta)^{\cot\theta - \sin\theta}}$$

$$y = \frac{(\tan\theta)^{\cos\theta}}{(\tan\theta)^{\cos\theta} + (\tan\theta)^{\sin\theta}} + (\tan\theta)^{\cot\theta} + \frac{(\tan\theta)^{\sin\theta}}{(\tan\theta)^{\cos\theta} + (\tan\theta)^{\sin\theta}} + (\tan\theta)^{\cot\theta}$$

$$\frac{y = 1}{dy}_{0 = \pi/3} = 0$$
7.
$$f'(x) = \sin(x^2)$$

$$y = f(x^2 + 1)$$

$$\frac{dy}{dx} = f'(x^2 + 1)2x$$

$$\frac{dy}{dx} = 2 \cdot f'(2) = 2 \sin 4$$
8. Clearly $\sin x$, $\cos x$ are negative at $x = \frac{7\pi}{6}$
So, $f(x) = -(\sin x + \cos x)$

$$f'(x) = (\sin x - \cos x)$$
9. $2 \sin x \cos y = 1$

$$\cos x \cos y - \sin x \sin y \cdot y' = 0 \implies y'_{(\pi/4, \pi/4)} = 1$$

$$y' = \cot x \cot y$$

 $y'' = -\cot x \csc^2 y \times y' - \cot y \csc^2 x$

 $y''_{(\pi/4, \pi/4)} = -(1 \times 2 \times 1) - (1 \times 2) = 0$

Continuity, Differentiability and Differentiation

10.
$$\frac{dx}{dt} = 2t f'(t^{2}), \quad \frac{dy}{dt} = 3t^{2} f'(t^{3})$$

$$\frac{dy}{dx} = \frac{3}{2} \frac{tf'(t^{3})}{f'(t^{2})}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{3}{2} \left(\frac{f'(t^{2})(f'(t^{3}) + 3t^{3}f''(t^{3})) - 2t^{2}f'(t^{3}) \cdot f''(t^{2})}{(f'(t^{2}))^{2}} \right) \frac{dt}{dx}$$

$$\frac{d^{2}y}{dx^{2}}\Big|_{t=1} = \frac{3}{2} \left(\frac{f'(1)(f'(1) + 3f''(1)) - 2f'(1) \cdot f''(1)}{(f'(1))^{2}} \right) \frac{1}{2f'(1)} = \frac{3}{4} \left(\frac{f''(1) + f'(1)}{(f'(1))^{2}} \right)$$

11. L.H.L. =
$$a + 1$$
 R.H.L. = $b + 1$

they are continuous L.H.L. = R.H.L.

they are continuous L.H.L. = R.H.L.

12.
$$y = \frac{\frac{1}{x}}{\frac{1}{x} - \alpha} + \frac{\frac{\beta}{x}}{\left(\frac{1}{x} - \alpha\right)\left(\frac{1}{x} - \beta\right)} + \frac{\frac{\gamma}{x^2}}{\left(\frac{1}{x} - \alpha\right)\left(\frac{1}{x} - \beta\right)\left(\frac{1}{x} - \gamma\right)}$$

$$= \frac{\frac{1}{x^2}}{\left(\frac{1}{x} - \alpha\right)\left(\frac{1}{x} - \beta\right)} + \frac{\frac{\gamma}{x^2}}{\left(\frac{1}{x} - \alpha\right)\left(\frac{1}{x} - \beta\right)\left(\frac{1}{x} - \gamma\right)} = \frac{\frac{1}{x^3}}{\left(\frac{1}{x} - \alpha\right)\left(\frac{1}{x} - \beta\right)\left(\frac{1}{x} - \gamma\right)}$$

$$\log y = -3 \ln x - \ln\left(\frac{1}{x} - \alpha\right) - \ln\left(\frac{1}{x} - \beta\right) - \ln\left(\frac{1}{x} - \gamma\right)$$

$$\frac{1}{y}y' = \frac{-3}{x} + \frac{\frac{1}{x^2}}{\left(\frac{1}{x} - \alpha\right)} + \frac{\frac{1}{x^2}}{\left(\frac{1}{x} - \beta\right)} + \frac{\frac{1}{x^2}}{\left(\frac{1}{x} - \gamma\right)}$$

$$y' = \frac{y}{x} \left(-3 + \frac{\frac{1}{x}}{\left(\frac{1}{x} - \alpha\right)} + \frac{\frac{1}{x}}{\left(\frac{1}{x} - \beta\right)} + \frac{\frac{1}{x}}{\left(\frac{1}{x} - \gamma\right)}\right)$$

$$y' = \frac{y}{x} \left(\frac{\alpha}{1/x - \alpha} + \frac{\beta}{1/x - \beta} + \frac{\gamma}{1/x - \gamma}\right)$$

13.
$$f(x) = \sqrt{\frac{1 + \sin^{-1} x}{1 - \tan^{-1} x}}$$

 $\ln f(x) = \frac{1}{2} [\ln(1 + \sin^{-1} x) - \ln(1 - \tan^{-1} x)]$

$$\frac{f'(x)}{f(x)} = \frac{1}{2} \left[\frac{1}{(1+\sin^{-1}x)\sqrt{1-x^2}} + \frac{1}{(1-\tan^{-1}x)(1+x^2)} \right]$$

$$\therefore f'(0) = 1$$

14.
$$\sin^2 x = -\sin^2 x \implies 2\sin^2 x = 0 \implies x = n\pi$$

15.
$$f(x)$$
 $tan x < cot x$ $tan x > cot x$

Points of non-derivability = $\frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$, $\frac{7\pi}{4}$

16.
$$g(x) = |||x-1|-1|-1|$$

= $x-3$ $x>3$

18.
$$\frac{d^2x}{dy^2} = -\frac{1}{\left(\frac{dy}{dx}\right)^3} \frac{d^2y}{dx^2}$$

$$\frac{dy}{dx} = 1 + e^x, \frac{d^2y}{dx^2} = e^x$$

at
$$x = \ln 2$$
, $\frac{dy}{dx} = 3$, $\frac{d^2y}{dx^2} = 2$

$$\frac{d^2x}{dy^2} = \frac{-2}{27}$$

19.
$$g'(f(x)) = \frac{1}{f'(x)}$$

$$f(x) = -4$$
 at $x = -2$
 $\Rightarrow g'(-4) = \frac{1}{f'(-2)} = \frac{1}{2}$

20.
$$f(x) = 2 - x$$
 $x \ge 1$
= x $0 \le x < 1$
= $-x$ $-1 \le x < 0$
= $x + 2$ $x < -1$

21.
$$f(x) = \cos x^2$$

 $f'(x) = -2x \sin x^2$

22.
$$f(g(x)) = x \Rightarrow f'(g(x))g'(x) = 1 \Rightarrow g'(x) = \frac{1}{f'(g(x))} = 1 + (g(x))^5$$

 $g''(x) = 5(g(x))^4 g'(x)$

Continuity, Differentiability and Differentiation

23. $f(x) = x^2$ $x \ge 1$ = x $0 \le x \le 1$ = 2x $-1 \le x \le 0$ = x - 1 $x \le -1$

Clearly it is non-differentiable at x = 0, -1 and 1.

24.
$$f(x) = \lim_{n \to \infty} \left(\cos \frac{x}{2} \cdot \cos \frac{x}{2^2} \cdot \cos \frac{x}{2^3} \cdot \dots \cdot \cos \frac{x}{2^n} \right) = \lim_{n \to \infty} \frac{\sin x}{2^n \sin \left(\frac{x}{2^n} \right)} = \frac{\sin x}{x}$$

25.
$$f\left(\frac{\pi^{-}}{4}\right) = f\left(\frac{\pi}{4}\right) = f\left(\frac{\pi^{+}}{4}\right)$$

$$\lim_{x \to \frac{\pi}{4}} \left(\frac{1 - \tan x}{4x - \pi}\right) = \lim_{x \to \frac{\pi}{4}} \frac{\tan\left(\frac{\pi}{4} - x\right) \cdot (1 + \tan x)}{4\left(x - \frac{\pi}{4}\right)} = -\frac{1}{2}$$

26.
$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{e^{-\frac{1}{h^2}} \sin \frac{1}{h}}{h}$$

27.
$$\frac{dy}{dx} = 2y + 10$$
$$\int \frac{dy}{y+5} = 2 \int dx$$

$$\ln(y+5) = 2x + c$$

$$y = 5(e^{2x} - 1) \qquad (\because c = \ln 5)$$

$$f(x) + 5\sec^2 x = 0 \implies e^{2x} + \tan^2 x = 0$$

28.
$$f\left(\frac{\pi^{-}}{2}\right) = \lim_{x \to \frac{\pi^{-}}{2}} \frac{\sin(\cos x)}{x - \frac{\pi}{2}} = \lim_{x \to \frac{\pi^{-}}{2}} \frac{\sin(\cos x)}{x - \frac{\pi}{2}} = -1$$

$$f\left(\frac{\pi^{+}}{2}\right) = \lim_{x \to \frac{\pi^{+}}{2}} \frac{\sin(\cos x)}{x - \frac{\pi}{2}} = \lim_{x \to \frac{\pi^{+}}{2}} \frac{\sin(\cos x + 1)}{x - \frac{\pi}{2}}$$

29. Let
$$g(x) = f(e^x)$$

$$g'(x) = f'(e^x) \cdot e^x$$

$$g''(x) = f''(e^x) \cdot e^{2x} + f'(e^x)e^x$$

30.
$$e^{f(x)} = \ln x \implies f(x) = \ln(\ln x) \implies g(x) = f^{-1}(x) = e^{e^x}$$

 $g'(x) = e^{e^x} \cdot e^x = e^{e^x + x}$

47

32.
$$\ln f(x) = 4 \ln(x-1) + 3 \ln(x-2) + 2 \ln(x-3)$$

$$\frac{f'(x)}{f(x)} = \frac{4}{x-1} + \frac{3}{x-2} + \frac{2}{x-3}$$

$$f'(x) = f(x) \left(\frac{4}{x-1} + \frac{3}{x-2} + \frac{2}{x-3} \right)$$

34.
$$f(2^+) = 0 \Rightarrow c = 0$$

 $f(2^-) = \frac{b \sin\{-x\}}{\{-x\}} = f(2^+) = 0 \Rightarrow b = 0$

35.
$$f(0) = \lim_{x \to 0} \frac{e^{\tan x} - e^x + \ln(\sec x + \tan x) - x}{\tan x - x}$$
$$= \lim_{x \to 0} e^x \frac{(e^{\tan x - x} - 1)}{\tan x - x} + \lim_{x \to 0} \frac{\ln(\sec x + \tan x) - x}{\tan x - x} = 1 + \lim_{x \to 0} \frac{\sec x - 1}{\sec^2 x - 1} = 1 + \frac{1}{2} = \frac{3}{2}$$

36.
$$f(0^{-}) = e^{a}$$

 $f(0) = b$
 $c = 1$
 $f(0^{+}) = \frac{2}{3} \Rightarrow b = e^{a} = \frac{2}{3}$
37. $\sqrt{x+y} + \sqrt{y-x} = 5$

$$\sqrt{x+y} + \sqrt{y-x} = 5$$

$$\sqrt{x+y} = 5 - \sqrt{y-x}$$
Sq. both sides,
$$\Rightarrow x+y = 25 + y - x - 10\sqrt{y-x}$$

$$\Rightarrow 25 - 2x = 10\sqrt{y-x}$$

$$\Rightarrow -2 = \frac{10(y'-1)}{2\sqrt{y-x}}$$

$$\Rightarrow -2\sqrt{y-x} = 5(y'-1)$$

$$\Rightarrow -\left(5 - \frac{2x}{5}\right) = 5(y'-1)$$

$$-5 + \frac{2x}{5} = 5(y'-1)$$

$$\Rightarrow y'' = \frac{2}{25}$$
38. $g(x) = f^{-1}(x)$

$$\Rightarrow f(g(x)) = x$$

$$\Rightarrow f'(g(x))g'(x) = 1$$

$$\Rightarrow g'(2) = \frac{1}{f'(g(2))}$$

$$f(1) = 2$$

$$\Rightarrow g(2) = 1$$

$$\Rightarrow g'(2) = \frac{1}{f'(1)}$$

$$f'(x) = 3x^2 + 4x^3 + \frac{1}{x}$$

$$f'(1) = 8$$

$$f'(1) = 8$$

$$\Rightarrow g'(2) = \frac{1}{8}$$

39.
$$f(x) = |x|$$

$$|x| x \in (-\infty, -1)$$

$$x^2 x \in [-1, 1)$$

$$-x$$
 $x \in [-1,$

$$=2x-1$$
 $x \in [1,\infty)$

Function is not differentiable at x = -1.

40.
$$g(x) = (f(x))^2 + (f'(x))^2 \Rightarrow g'(x) = 2f(x)f'(x) + 2f'(x)f''(x)$$

or
$$g'(x) = 2f(x)f'(x) - 2f(x)f'(x) = 0 \implies g(x) = c \implies g(8) = 8$$

41.
$$l = \lim_{x \to \infty} \left(f\left(\frac{a}{\sqrt{x}}\right)^{-1} = e^{-1} \right)^{x}$$

Using L' Hospital's rule, we get

$$l = e^{\frac{a^2}{2}f''(0)} = e^{-\frac{a^2}{2}}$$

42.
$$\frac{d}{dx} f_n(x) = e^{f_{n-1}(x)} \frac{d}{dx} f_{n-1}(x) = f_n(x) \frac{d}{dx} f_{n-1}(x)$$

$$= f_n(x) f_{n-1}(x) \dots f_2(x) f_1(x)$$

$$= f_n(x)f_{n-1}(x).....f_2(x)f_1(x)$$
43. $y = \tan^{-1}(x^{1/3}) - \tan^{-1}(a^{1/3})$

43.
$$y = \tan^{-1}(x^{1/3}) - \tan^{-1}(a^{1/3})$$

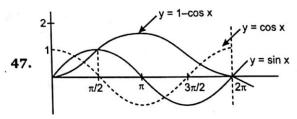
44. $f(x)$ is continuous at $x = 0$ then $\frac{4k-1}{3} = \frac{4k+1}{5}$

45. Put
$$x = \sin \theta$$
 then $y = \tan^{-1} \tan \frac{\theta}{2}$

46.
$$\lim_{x\to 0} \frac{e^x \cos x - \ln(1+x) - 1}{x}$$

$$\lim_{x \to 0} \frac{(e^x - 1)}{x} \cos x - \frac{\ln(1 + x)}{x} + \left(\frac{\cos x - 1}{x}\right) = 0$$

50



Clearly 3 sharp points.

48.
$$g(x) = f^{-1}(x)$$

$$f(4) = 2 \Rightarrow g(2) = 4$$

$$G(x) = \frac{1}{g(x)}$$

$$f(4) = 2 \implies g(2) = 4$$

 $f'(4) = \frac{1}{16} \implies g'(2) = 16$

$$G'(x) = \frac{-1}{(g(x))^2} \cdot g'(x) \implies G'(2) = \frac{-1}{(g(x))^2} \cdot g'(2) = \frac{-1}{16} \cdot 16 = -1$$



$$f(x) = \text{maximum}\left(x^{4}, x^{2}, \frac{1}{81}\right) = \frac{1}{81} \qquad x \le \frac{1}{9}$$
$$= x^{2} \qquad \frac{1}{9} < x < \frac{1}{9}$$

f(x) is non-differentiable at $x = \frac{1}{0}$, 1

50.
$$\lim_{h \to 0} \frac{\ln(f(2+h^2)) - \ln(f(2-h^2))}{h^2}$$

Apply L Hospital rule,

$$\lim_{h \to 0} \frac{\frac{2hf'(2+h^2)}{f(2+h^2)} + \frac{2hf'(2-h^2)}{f(2-h^2)}}{2h} = 4$$

51.
$$f(x) = (x^2 - 3x + 2)|(x - 1)(x - 2)(x - 3)| + \left| \sin\left(x + \frac{\pi}{4}\right) \right|$$

Not differentiable at x = 3, $\frac{3\pi}{4}$, $\frac{7\pi}{4}$

52.
$$h(x) = f(2x g(x) + \cos \pi x - 3)$$

 $h'(x) = f'(2x g(x) + \cos \pi x - 3)[2g(x) + 2xg'(x) - \pi \sin \pi x]$
 $h'(1) = f'(2g(1) - 4)[2g(1) + 2g'(1)] = 32$

Continuity, Differentiability and Differentiation

53.
$$f(x) = \frac{(x+1)^7 \sqrt{1+x^2}}{(x^2-x+1)^6}$$
 $(f(0) = 1)$

$$\ln f(x) = 7\ln(1+x) + \frac{1}{2}\ln(1+x^2) - 6\ln(x^2 - x + 1)$$

$$\frac{f'(x)}{1} = \frac{7}{1} + \frac{x}{1} - \frac{6(2x-1)}{1}$$

$$\frac{f'(x)}{f(x)} = \frac{7}{1+x} + \frac{x}{1+x^2} - \frac{6(2x-1)}{x^2 - x + 1}$$

$$f'(0) = 13$$

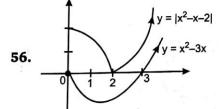
54.
$$f(x)$$

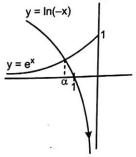
$$\begin{cases} -\sin 2x; & x > 1 \\ \ln(1+x); & x < 1; \\ \frac{\ln 2 - \sin 2}{2}; & x = 1 \end{cases}$$

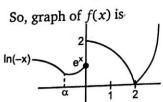
55.
$$f(f(x)) \begin{bmatrix} f(x); & \text{if } f(x) \text{ is rational} \\ 1 - f(x); & \text{if } f(x) \text{ is irrational} \end{bmatrix}$$

$$f(f(x))$$
 $\begin{bmatrix} x; & \text{if } x \text{ is rational} \\ 1-(1-x); & \text{if } x \text{ is irrational} \end{bmatrix}$

$$f(f(x))\begin{bmatrix} x & \text{if } x \text{ is rational} \\ x & \text{if } x \text{ is irrational} \end{bmatrix}$$







Clearly, 3 non-differentiability points.

51

57.
$$g(f(x)) = x$$

58.
$$\lim_{x \to 0^{-}} \frac{\ln(2 - \cos 2x)}{\ln^{2}(1 + \sin 3x)} = K = \lim_{x \to 0^{+}} \frac{e^{\sin 2x} - 1}{\ln(1 + \tan 9x)}$$

$$\lim_{x \to 0^{-}} \frac{1 - \cos 2x}{\ln x} = \lim_{x \to 0^{+}} \frac{\sin 2x}{\ln(1 + \tan 9x)}$$

$$\lim_{x \to 0^{-}} \frac{1 - \cos 2x}{\sin^2 3x} = K = \lim_{x \to 0^{+}} \frac{\sin 2x}{\tan 9x}$$

59.
$$\frac{dx}{dt} = -\frac{3}{t^4} - \frac{2}{t^3} = \frac{-3 - 2t}{t^4}$$
$$\frac{dy}{dt} = \frac{-3}{t^3} - \frac{2}{t^2} = \frac{-3 - 2t}{t^3}$$
$$\frac{dy}{dt} = t$$

$$\frac{dy}{dx} - x \left(\frac{dy}{dx}\right)^3 = t - \left(\frac{1+t}{t^3}\right) \cdot t^3 = -1$$

60.
$$-\frac{2}{y^3}y' = 2\sqrt{2}(-2\sin 2x)$$

$$\frac{(y')^2}{y^6} = 8 - (2\sqrt{2}\cos x)^2 = 8 - \left(\frac{1}{y^2} - 1\right)^2$$
$$\frac{(y')^2}{y^6} = \frac{8y^2 - (1 - y^2)^2}{y^4}$$

$$(y')^2 = 8y^4 - y^2(1-y^2)^2$$
 then diff.

61.
$$f(x) = x$$
 satisfy the equation.

$$f(5) = 5$$
62. $f(x) \begin{bmatrix} x & x \le 0 \\ x^2 & 0 < x < 1 \\ 2x - 1 & x \ge 1 \end{bmatrix}$

$$f'(x) \begin{bmatrix} 1 & x \le 0 \\ 2x & 0 < x < 1 \\ 2 & x \ge 1 \end{bmatrix}$$

f(x) is not derivable at x = 0.

63.
$$y = (x + \sqrt{1 + x^2})^n$$

$$\frac{dy}{dx} = \frac{ny}{\sqrt{1+x^2}}$$

$$\frac{d^{2}y}{dx^{2}} = n \left[\frac{\sqrt{1 + x^{2}}y' - \frac{yx}{\sqrt{1 + x^{2}}}}{1 + x^{2}} \right] \Rightarrow (1 + x^{2}) \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} = n^{2}y$$

64.
$$g'(x) = f'(x - \sqrt{1 - x^2}) \cdot \left(1 + \frac{x}{\sqrt{1 - x^2}}\right) = \left(1 - \left(x - \sqrt{1 - x^2}\right)^2\right) \cdot \left(\frac{x + \sqrt{1 - x^2}}{\sqrt{1 - x^2}}\right)$$
$$= 2x\left(x + \sqrt{1 - x^2}\right)$$

66.
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} f(x) \left(\frac{f(h) - 1}{h} \right) = f(x) \cdot f'(0) = 3f(x)$$
 (: $f'(0) = 3$)

67.
$$f(x) = \lim_{n \to \infty} \frac{\log_{e}(2+x) - x^{2n} \sin x}{1 + x^{2n}}$$

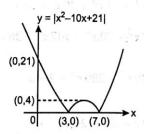
$$f(x) = \begin{cases} \ln(2+x) & |x| < 1 \\ -\sin x & |x| > 1 \end{cases}$$

$$\frac{\ln 3 - \sin 1}{2} \quad x = 1$$

$$\frac{\sin 1}{2} \quad x = -1$$

68.
$$\lim_{x \to 0} \frac{x - e^x + 1 - \{1 - \cos 2x\}}{x^2} \Rightarrow \lim_{x \to 0} \frac{x - e^x + 1 - 1 + \cos 2x}{x^2}$$
$$\Rightarrow \lim_{x \to 0} \frac{x - e^x + \cos 2x}{x^2} = \lim_{x \to 0} \frac{1 + x - e^x}{x^2} + \frac{(\cos 2x - 1)}{x^2} = -\frac{5}{2}$$

69.



71.
$$xy = \text{const.}$$

 $y + xy' = 0 \Rightarrow y' = -\frac{y}{x}$

72. f(x) = -1 + |x - 2| is a continuous function.

54

g(x) = 1 - |x| is a continuous function.

 \Rightarrow f(g(x)) is a continuous function.

73.
$$f'(K^+) = \lim_{h \to 0} \frac{f(k+h) - f(k)}{h}$$
$$= \lim_{h \to 0} \frac{K \tan(\pi k + \pi h) - k \tan k\pi}{h}$$
$$= \lim_{h \to 0} k \left(\frac{\tan \pi h}{h}\right) = k\pi$$

$$\lim_{x \to 0} \frac{ae^{\sin x} + be^{-\sin x} - c}{x^2} = 2$$

Applying L Hospital Rule,

$$\lim_{x \to 0} \frac{ae^{\sin x} \cdot \cos x - be^{-\sin x} \cdot \cos x}{2x} = 2 \implies a = b$$

75. $\tan x = \sec \alpha \cdot \tan y$

$$\sec^2 x = \sec \alpha \cdot \sec^2 y \cdot y'$$

$$y' = 1$$
 at $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$

 $2\sec^2 x \tan x = \sec \alpha (\sec^2 y \cdot y'' + 2\sec^2 y \cdot \tan y \cdot (y')^2) \Rightarrow y'' = 0$

76. We gave,

$$y = (x^{2} - 9)(x^{2} - 4)(x^{2} - 1)x$$

$$= \{x^{6} - 14x^{4} + x^{2}(49) - 36\}x$$

$$= x^{7} - 14x^{5} + 49x^{3} - 36x$$

Therefore, $\frac{dy}{dx} = 7x^5 - 70x^4 + 147x^2 - 36$

Thus, $\frac{d^2y}{dx^2} = 42x^5 - 280x^3 + 294x$

$$\frac{d^2y}{dx^2}\Big|_{x=1} = 42 - 280 + 294 = 56$$

77.
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{f(x) f(h) - f(x)}{h} = \lim_{h \to 0} f(x) \left(\frac{f(h) - 1}{h}\right)$$

$$\Rightarrow f'(x) = f'(0), \ f(x) \Rightarrow f(x) = e^{kx} \qquad \text{(where } k = f'(0)\text{)}$$

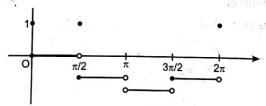
78.
$$f(g(x)) = x$$
; $f'(g(x))g'(x) = 1 \Rightarrow g'(6) = \frac{1}{f'(g(6))} = \frac{1}{f'(0)}$

79.
$$\frac{dy}{dz} = \frac{dy/dx}{dz/dx} = \frac{f'(x)}{g'(x)}$$

$$\frac{d^2y}{dz^2} = \frac{d}{dz}\left(\frac{dy}{dz}\right) = \frac{\frac{d}{dx}\left(\frac{dy}{dz}\right)}{\frac{dz}{dx}} = \frac{g'f'' - f'g''}{(g')^3}$$

$$g(f(x)) = \begin{cases} f(x) + 1 = x + 2, x \in (-\infty, -1) \ x = -1, 1 \text{ non differentiable} \\ (f(x) - 1)^2 = (x + 1 - 1)^2 = x^2, x \in (-1, 0) \\ (|x - 1| - 1)^2, x \ge 0 \end{cases}$$

81.
$$f(x) = [\sin x] + [\cos x]$$



82.
$$g(x) = \begin{cases} \cos x &, x \in [0, \pi] \\ \sin x - 1 &, x > \pi \end{cases}$$

$$g(\pi^{-}) = g(\pi) = g(\pi^{+}) = -1$$

but not differentiable at $x = \pi$.

83.
$$\sum_{r=0}^{\infty} \frac{f^{r}(0)}{r!} = \frac{f(0)}{0!} + \frac{f'(0)}{1!} + \frac{f''(0)}{2!} + \dots$$

$$= 4^{n} + \frac{n \cdot 4^{n-1}}{1!} + \frac{n(n-1) \cdot 4^{n-2}}{2!} + \dots$$

$$= {^{n}C_{0}}4^{n} + {^{n}C_{1}}4^{n-1} + {^{n}C_{2}}4^{n-2} + \dots$$

$$= (4+1)^{n} = 5^{n}$$

84.
$$f(x) = \frac{x}{1-x} \qquad x \le -1$$
$$= \frac{x}{1+x} \qquad -1 < x < 0$$
$$= \frac{x}{1-x} \qquad 0 \le x < 1$$
$$= \frac{x}{1+x} \qquad x \ge 1$$

Function is discontinuous at x = -1, 1

f(x) is not differentiable at x = -1, 1

85.
$$f(g(x)) = x$$

$$f'(g(x))g'(x) = 1 \implies g'\left(\frac{-7}{6}\right) = \frac{1}{f'\left(g\left(\frac{-7}{6}\right)\right)} = \frac{1}{f'(1)}$$

86.
$$f(x) = 0$$

$$=4x^2(1-2x)^2 x<0$$

Differentiable everywhere.

88. f(x) is discontinuous at x = 1, 2

$$\Rightarrow g(x) = x^2 - ax + b = 0 < x = 1 x = 2$$

89.
$$f^{-1}(f(x)) = x$$

$$(f^{-1}(f(x)))'f'(x) = 1$$

$$(f^{-1}(f(9)))'f'(g) = 1$$

$$(f^{-1}(3))' = \frac{1}{f'(9)} = \frac{1}{5}$$

90.
$$f(0^+) = \lim_{h \to 0} h^n \sin \frac{1}{h} = 0 \implies n > 0$$

$$f(0^-) = \lim_{h \to 0} (-h)^n \sin\left(-\frac{1}{h}\right) = 0 \implies n > 0$$

$$f'(x) = n \cdot x^{n-1} \cdot \sin \frac{1}{x} - x^{n-2} \cdot \cos \frac{1}{x} = \text{finite} \Rightarrow n = 2$$

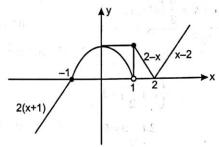
Exercise-2: One or More than One Answer is/are Correct

1. f(x) has exactly one point of discontinuity so that $sgn(x^2 - \lambda x + 1)$ is equal to zero for some values of λ .

$$D = 0$$

$$\Rightarrow \lambda = \pm 2$$

2. Answer from the graph.



3. (a) L.H.L. =
$$\lim_{x \to 0^{-}} \frac{x(3e^{1/x} + 4)}{2 - e^{1/x}} = 0\left(\frac{4}{2}\right) = 0$$

R.H.L. =
$$\lim_{x \to 0^+} \frac{x(3e^{1/x} + 4)}{2 - e^{1/x}} = \lim_{x \to 0^+} x \left(\frac{3 + 4e^{-1/x}}{2e^{-1/x} - 1} \right) = 0 \left(\frac{3}{-1} \right) = 0$$

$$f(0) = 0$$

$$f(x) \text{ is continuous at } x = 0.$$

(b)
$$f'(0^+) = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} x \frac{\left(\frac{3e^{1/x} + 4}{2 - e^{1/x}}\right)}{x}$$
$$= \lim_{x \to 0^+} \frac{3 + 4e^{-1/x}}{2e^{-1/x} - 1} = -3$$

$$= \lim_{x \to 0^+} \frac{1}{2e^{-1/x} - 1} = -3$$

$$f(x) - f(0) \qquad 3e^{1/x} + 4 \qquad 4$$

$$f'(0^-) = \lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^-} \frac{3e^{1/x} + 4}{2 - e^{1/x}} = \frac{4}{2} = 2$$

$$f'(0^+)\neq f'(0^-)$$

(c)
$$f'(0^+) = -3$$

(d)
$$f'(0^-) = 2$$
 exist

$$4. \quad \text{Given} |f(x)| \le \sin^2 x$$

Clearly
$$|f(0)| \le 0 \implies f(0) = 0$$

Solution of Advanced Problems in Mathematics for JEE

$$\lim_{x \to 0} |f(x)| = \left| \lim_{x \to 0} f(x) \right| = 0$$

$$|f'(0)| = \left| \lim_{x \to 0} \frac{f(x) - f(0)}{x} \right| = \left| \lim_{x \to 0} \frac{f(x)}{x} \right| \le 0$$
5. $f(0^{-}) = \lim_{x \to 0^{-}} \frac{a \left[1 - x \left(x - \frac{x^{3}}{3!} \dots \right) \right] + b \left(1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} \dots \right) + 5}{x^{2}} = f(0)$

$$= \lim_{x \to 0^{-}} \frac{(a + b + 5) - \left(a + \frac{b}{2} \right) x^{2} + \dots}{x^{2}} = 3$$

$$a + b + 5 = 0$$

$$-\left(a + \frac{b}{2} \right) = 3$$

$$2a + b = 6$$

$$2a + b + 6 = 0$$

$$\frac{2a + b + 6 = 0}{-a - 1 = 0}$$

$$\frac{2a + b + 6 = 0}{-a - 1 = 0}$$

www.jeebooks.in

-a - 1 = 0 a = -1 b = -4

 $f'(0^+)$ is exist when c=0

$$\lim_{x \to 0} (1 + dx)^{1/x} = 3$$

$$e^{\lim_{x \to 0} \frac{1}{x} (dx)} = 3$$

$$e^{d} = 3$$

$$d = \ln 3$$

7. (a)
$$f(x) = \sqrt[3]{x^2|x|} - 1 - |x|$$

But $x^2|x| = |x|^3$

 \Rightarrow

So, f(x) = |x| - 1 - |x| = -1 is every where differentiable. So, no where non-differentiable.

(b)
$$\lim_{x \to \infty} \left[x(\tan^{-1}(x+1) - x\tan^{-1}(x+1)) \right] + \left[5\tan^{-1}(x+1) - \tan^{-1}(x+1) \right]$$
$$= \lim_{x \to \infty} 4\tan^{-1}(x+1) = 4\left(\frac{\pi}{2}\right) = 2\pi$$

(c)
$$f(-x) = \sin\left(\ln\left(-x + \sqrt{x^2 + 1}\right)\right) = \sin\left(\ln\frac{1}{x + \sqrt{x^2 + 1}}\right)$$
$$= \sin\left(-\ln\left(x + \sqrt{x^2 + 1}\right)\right) = -\sin\left(\ln\left(x + \sqrt{x^2 + 1}\right)\right)$$
$$= -f(x)$$

So, f(x) is an odd function.

(d)
$$f(x) = \frac{4 - x^2}{4x - x^3}$$
 is discontinuous at where denominator is zero, $4x - x^3 = 0$
 $\Rightarrow x = 0, x = \pm 2$

a, b, c only correct.

8.
$$g'(x) = ae^{ax} + f'(x) \implies g'(0) = a - 5$$

 $g''(x) = a^2 e^{ax} + f''(x)$

$$g''(0) = a^2 + 3$$

$$\Rightarrow a^2 + a - 2 = 0; a = -2, 1$$

10.
$$f(0^+) = f(0) = f(0^-) = 0$$

$$11. \int f'(x) \, dx = \int f'(-x) \, dx$$

$$\Rightarrow f(x) + f(-x) = c$$

12.
$$|f(x)| \le x^{4n}$$

$$\Rightarrow f(0) = 0$$

$$\lim_{h \to 0} (-h^{4n}) \le \lim_{h \to 0} f(0+h) \le \lim_{h \to 0} (h)^{4n} \qquad \Rightarrow f(0+h) = 0$$

$$\lim_{h \to 0} (-(-h)^{4n}) \le \lim_{h \to 0} f(0-h) \le \lim_{h \to 0} (-h)^{4n} \Rightarrow f(0-h) = 0$$

 \Rightarrow f(x) is continuous at x = 0.

$$f(x) \text{ is continuous at } x = 0.$$

$$f'(0^+) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = 0 \qquad \left[\lim_{h \to 0} \frac{-h^{4n}}{h} \le \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} \le \lim_{h \to 0} \frac{h^{4n}}{h} \right]$$

 \Rightarrow f(x) is differentiable at x = 0.

13.
$$g(x) = 0$$
 $x \in I$
= x^2 $x \notin I$

$$gof(x) = 0$$
 for $x \in R$

14. If f(x) is continuous at x = 2 then 3p + 10q = 4

www.jeebooks.in

$$f(x)$$
 is differentiable at $x = 2$ then $2p + 11q = 4$
16. $f(x) = x^2$ $-2 \le x \le 0$
 $= x$ $0 < x < 1$

$$=x^3 \qquad 1 \le x \le 2$$

17.
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f(x) \lim_{h \to 0} \frac{\frac{f(x+h)}{f(x)} - 1}{h}$$

$$= f(x) \lim_{h \to 0} \frac{f\left(1 + \frac{h}{x}\right) - 1}{h}$$

So,
$$f'(x) = \frac{f(x)}{x} \cdot f'(1)$$

$$\ln(f(x)) = 3\ln x + \ln c$$

$$f(x) = cx^3$$

$$f(1) = 1$$
 so $c = 1$

$$f(x) = x^3$$

So, we can check options.

18.
$$f(x) = (x-1)(x-2)(x+1)(x+2) = (x^2-1)(x^2-4)$$

 $f'(x) = (x^2-1)2x + (x^2-4)(2x) = 2x(2x^2-5) = 0$
 $x = 0, \pm \sqrt{\frac{5}{2}}$

19. If
$$f(x)$$
 is continuous at $x = 2$ then $3p + 10q = 4$
 $f(x)$ is differentiable at $x = 2$ then $2p + 11q = 4$

20.
$$y = e^{x \sin x^3} + e^{x \ln(\tan x)}$$

$$\frac{dy}{dx} = e^{x \sin(x^3)} [x \cos(x^3) 3x^2 + \sin(x^3)] + e^{x \ln(\tan x)} \left(\ln(\tan x) + x \frac{1}{\tan x} \sec^2 x \right)$$

$$y' = e^{x \sin(x^3)} [3x^3 \cos(x^3) + \sin(x^3)] + (\tan x)^x (\ln(\tan x) + 2x \csc 2x)$$

21.
$$f(x) = 1 - (1 - x) + (1 - x)x^2 + (1 - x)(1 - x^2)x^3 + \dots + (1 - x)(1 - x^2)\dots(1 - x^{n-1})x^n$$

= $1 - (1 - x)(1 - x^2)(1 - x^3)\dots(1 - x^n) = 1 - \prod_{r=1}^{n} (1 - x^r)$

$$(f(x)-1)=-\prod_{r=1}^{n}(1-x^{r})$$

22.
$$\therefore$$
 f and g must be continuous.

$$1+a=2+b$$

$$\Rightarrow a=1+b$$

$$3+b=1 \Rightarrow b=-2$$

23.
$$f(x)$$
 $0 \le x \le 1$
 $2\cos \pi x + \tan^{-1} x$; $1 < x \le 2$

is must be continuous and differentiable at x = 1.

$$a + b = -2 + \frac{\pi}{4}$$
 ...(1) (continuity)
$$3a = 0 + \frac{1}{2}$$
 ...(2) (By differentiable)

We get, a and b

24.
$$f(f(x)) = 2 + x$$
 $0 \le x \le 1$
= $2 - x$ $1 < x \le 2$
= $4 - x$ $2 < x \le 3$

25.
$$\ln(f(x)) = \ln(x+1) + \ln(x+2) + \dots + \ln(x+100)$$

$$\frac{f'(x)}{f(x)} = \frac{1}{x+1} + \frac{1}{x+2} + \dots + \frac{1}{x+100}$$

$$\frac{f(x)f''(x) - (f'(x))^2}{(f(x))^2} = -\left(\frac{1}{(x+1)^2} + \frac{1}{(x+2)^2} + \frac{1}{(x+3)^2} + \dots + \frac{1}{(x+100)^2}\right)$$
if $g(x) = f(x)f''(x) - (f'(x))^2 = 0$

if
$$g(x) = f(x)f''(x) - (f'(x))^2 = 0$$

$$\Rightarrow \frac{1}{(x+1)^2} + \frac{1}{(x+2)^2} + \dots + \frac{1}{(x+100)^2} = 0$$

 \Rightarrow g(x) = 0 has no solution.

26.
$$h(x) = -1$$
 $x < 1$
 $= |x-2| + a + 2 - |x|$ $1 \le x < 2$
 $= |x-2| + a + 1 - b$ $x \ge 2$

if h(x) is continuous at x = 1, then a = -3

if h(x) is continuous at x = 2, then b = 1

27.
$$\lim_{x\to 0^-} f(x) = 1 = \lim_{x\to 0^+} f(x)$$

Clearly, C = 1 and use L' Hospital's rule.

28. Differentiable w.r.t. 'x'

$$2f(x)f'(x) + 2y = 2f(x + y)f'(x + y)$$

67

put x = 0

$$k + y = f'(y)f(y)$$

integrate on both sides,

$$ky + \frac{y^2}{2} = \frac{f^2(y)}{2} + c$$
 ...(1)

put x = y = 0 in given equation, we get

$$f^2(0) = 2$$

$$f(0) = \sqrt{2} \text{ as } (f(x) > 0)$$

put y = 0 in (1)

$$1+c=0 \implies c=-1$$

also put $y = \sqrt{2}$

$$k\sqrt{2} + 1 = \frac{4}{2} - 1$$

$$k\sqrt{2} = 0$$

$$k = 0$$

$$\frac{y^2}{2} = \frac{f^2(y)}{2} - 1$$

$$f^2(y) = y^2 + 2$$

$$f(y) = \sqrt{y^2 + 2}$$

$$f(x) = \sqrt{x^2 + 2}$$

Hence, we can answer.

30.
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

= $\lim_{h \to 0} \frac{f(h)}{h} + x^2 = x^2 + f'(0)$; $f'(x) = x^2 - 1$

32.
$$f(1^-) = f(1^+) = f(1) = \frac{1}{2}$$

$$f'(x) = x$$
 $0 \le x < 1$
= $4x - 3$ $1 \le x \le 2$
 $f''(x) = 1$ $0 \le x < 1$

$$f^{-1}(x) = 1 \qquad 0 \le x < 1$$
$$= 4 \qquad 1 \le x \le 2$$

34.
$$gof(x) = 0$$

 $fog(x) = 0$ $x \in I$
 $= [x^2]$ $x \notin I$

Continuity, Differentiability and Differentiation

35.
$$f(g(x)) = x$$

 $f'(g(x))g'(x) = 1$
 $g'(x) = \frac{1}{f'(g(x))}$
 $g'(e) = \frac{1}{f'(g(e))} = \frac{1}{f'(1)} = \frac{1}{e+1}$
 $g''(x) = \frac{-1}{(f'(g(x)))^2} f''(g(x)) \cdot g'(x)$

$$g''(e) = \frac{-1}{(f'(1))^2} f''(1) \cdot g'(e)$$

36.
$$f(2^+) = \lim_{x \to 2^+} [x - 1] = 1$$

$$f(2^{-}) = \lim_{x \to 2^{-}} \frac{3x - x^{2}}{2} = 1$$

$$f(3^-) = \lim_{x \to 3^-} [x - 1] = 1$$

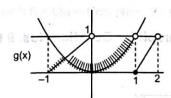
$$f(3^+) = \lim_{x \to 3^+} (x^2 - 8x + 17) = 2$$

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

2.
$$f(x) = \lim_{n \to \infty} n^2 \frac{\tan(\ln(\sec(x/n)))}{\ln(\sec(x/n))} \times \frac{(\ln(\sec(x/n) - 1) + 1)}{\sec(x/n) - 1} \times \frac{\sec(x/n) - 1}{(x/n)^2} \times \left(\frac{x}{n}\right)^2$$

$$f(x) = \frac{x^2}{2}$$



Paragraph for Question Nos. 3 to 4

4.
$$f'(x) = 2x + g'(1)$$

$$f''(x) = 2$$

$$f'(1) = 2 - 3 = -1$$

$$g'(1) = 2 f(1) + 2 + f'(1)$$

 $\Rightarrow f(1) = -2$

$$f(x) = x^{2} - 3x$$

$$g''(2) = 2(-2) + 2(2) = 0$$

$$-2 = 1 + g'(1)$$

$$g(x) = -2x^{2} + x(2x - 3) + 2$$

$$g'(1) = -3$$

$$= -3x + 2$$

$$f(1) + g(-1) = -2 + (3 + 2) = 3$$

Paragraph for Question Nos. 5 to 6

- **5.** Clearly, 3 is non-repeated root where as 1 is repeats and also $(x-2)^{1/3}$ is not diff. at x=2. \therefore at 3, 2 is non-diff. and sum is 5.
- **6.** h(x) is continuous.

$$x - 1 = x^{2} - x - 2$$

$$x^{2} - 2x - 1 = 0$$

$$(x - 1)^{2} = 2$$

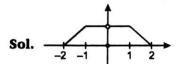
$$x = 1 \pm \sqrt{2}$$

$$\tan \frac{3\pi}{8} = 1 + \sqrt{2}, \tan \left(\frac{\pi}{8}\right) = \sqrt{2} - 1$$

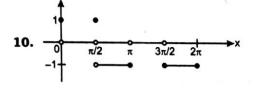
$$\tan \frac{7\pi}{8} = 1 - \sqrt{2}$$

 $\sqrt{2} - 1$ is not differentiable.

Paragraph for Question Nos. 7 to 8



Paragraph for Question Nos. 9 to 10



65

Paragraph for Question Nos. 11 to 13

www.jeebooks.in

11.
$$f(x) = \begin{bmatrix} 0 & 0 \le x < 1 \\ x & 1 \le x < 2 \\ 2(x-1) & 2 \le x < 3 \\ 3(x-1) & x = 3 \end{bmatrix}$$

No. of values where f(x) is discontinuous = 2

- **12.** f(x) is non-differentiable at x = 1, 2, 3.
- 13. No. of integers in the range of f(x) = 5

Paragraph for Question Nos. 14 to 16

Sol.
$$f'(x) = \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h} = f'(0)f(x)$$

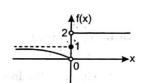
$$\Rightarrow f(x) = e^{2x} \qquad (f'(0) = 2)$$

$$g(x) = x^2$$
85 of VS, solve notice of equations

Paragraph for Question Nos. 17 to 18

Sol.
$$g'(x) = \lambda \sec^2 x + (1 - \lambda) \cos x - 1 = \frac{(1 - \cos x)(\lambda - f(x))}{f(x)}$$

Paragraph for Question Nos. 19 to 21



Paragraph for Question Nos. 22 to 24

Sol.
$$f(x) = g'(1) \sin x + (g''(2) - 1)x$$

 $\Rightarrow f'(x) = g'(1) \cos x + g''(2) - 1 \Rightarrow f'\left(\frac{\pi}{2}\right) = g''(2) - 1$
 $f''(x) = -g'(1) \sin x \Rightarrow f''\left(\frac{\pi}{2}\right) = -g'(1)$
 $g(x) = x^2 - f'\left(\frac{\pi}{2}\right) \cdot x + f''\left(-\frac{\pi}{2}\right) \Rightarrow g'(x) = 2x - f'\left(\frac{\pi}{2}\right)$
 $g''(x) = 2 \Rightarrow g''(2) = 2$
 $f(x) = \sin x + x \text{ and } g(x) = x^2 - x + 1$

Paragraph for Question Nos. 25 to 26

Sol.
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{f(x) + f(h)}{1 + f(x)f(h)} - f(x)}{1 + f(x)f(h)}$$

$$f'(x) = \lim_{h \to 0} f(h) \frac{(1 - (f(x))^2)}{h}$$

$$f'(x) = \lim_{h \to 0} f'(0)(1 - f(x)^2) \qquad (f(0) = 0)$$

$$\Rightarrow f(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$$

$$f'(x) \ge 0 \ \forall \ x \in \mathbb{R}$$

$$\lim_{x \to 0} (f(x))^x = e^{\lim_{x \to 0} \frac{-2x}{(e^{2x} + 1)}} = 1$$

Paragraph for Question Nos. 27 to 28

Sol.
$$f(x) = 3(x+6)(x+1)(x-2)(x-3) + x^2 + 1$$
 then k why!
27. $\lim_{x \to -6} \frac{3(x+1)(x-2)(x-3)(x+6)}{x+6} = -\frac{6!}{2}$
28. $g(x) = \frac{1}{-3(x+6)(x+1)(x-2)(x-3)}$

Paragraph for Question Nos. 29 to 30

Sol.
$$f(x) = g(x)$$

 $x^{\ln x} = e^2 x$
 $(\ln x)^2 = 2 + \ln x$
 $x = \alpha = \frac{1}{e}$, $\beta = e^2$ by of x ? For address of equations α

29.
$$\lim_{x \to e^2} \frac{f(x) - c\beta}{g(x) - \beta^2} = \frac{f'(x)}{g'(x)} = 4$$

$$c = e^2$$

30.
$$h'(\alpha) = \frac{g(\alpha) f'(\alpha) - g'(\alpha) f(\alpha)}{g^2(\alpha)} = \frac{e(-2e^2) - e^2 - e}{(e)^2} = -3e$$

Continuity, Differentiability and Differentiation

67

Exercise-4: Matching Type Problems

1. (A) Let
$$I = \int_{0}^{\pi} \frac{\log(\sin x)}{\cos^{2} x} dx$$

$$= 2 \int_{0}^{\pi/2} \frac{\log(\sin x)}{\cos^{2} x} dx = 2 \left[\int_{0}^{\pi/2} \log(\sin x) \sec^{2} x dx \right] = 2 \left[\log(\sin x) \tan x \Big|_{0}^{\pi/2} - \int_{0}^{\pi/2} \frac{\cos x}{\sin x} \tan x dx \right]$$

$$= 2(0 - 0) - 2 \int_{0}^{\pi/2} dx = 0 - 2 \left(\frac{\pi}{2} \right) = -\pi = -k$$

$$\Rightarrow \qquad k = \pi$$

$$\therefore \qquad \frac{3k}{\pi} = 3 > 0, 1, 2$$

(B)
$$e^{x+y} + e^{y-x} = 1$$

 $e^x + e^{-x} = e^{-y}$
 $e^x - e^{-x} = e^{-y}(-y')$
 $e^x + e^{-x} = e^{-y}(-y'') + e^{-y}(y')^2$
 $e^{-y} = e^{-y}(-y'') + e^{-y}(y')^2 \Rightarrow y' - (y')^2 + 1 = 0$
 $\therefore k = 1$

(C) Let
$$f^{-1} = g$$

 $g\{f(x)\} = x \Rightarrow (g'f(x))f'(x) = 1$
 $g'(2 \ln 2) f'(2) = 1$
 $g'2(\ln 2) = \frac{1}{1 + \ln 2}$
 $2(f^{-1})'(\ln 4) = \frac{2}{1 + \ln 2} > 0, 1$

(D)
$$l = \lim_{x \to \infty} (x \ln x)^{\frac{1}{x^2 + 1}}$$

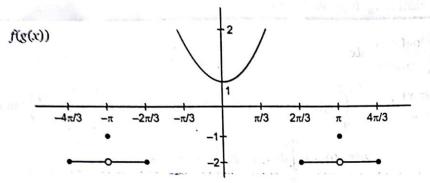
$$\ln l = \lim_{x \to \infty} \frac{\ln x + \ln(\ln x)}{x^2 + 1} = \lim_{x \to \infty} \frac{\frac{1}{x} + \frac{1}{\ln x} \cdot \frac{1}{x}}{2x} = 0$$

$$\ln(l) = 0 \Rightarrow l = 1$$

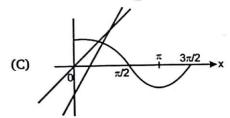
$$\sec 2, \quad -2 \le x < -1$$

$$\sec 1, \quad -1 \le x < 0$$

$$\sec x, \quad 0 \le x \le 2$$



- 3. (A) $f(1^+) = f(1^-) = -1$
 - (B) $\int_{2}^{3} ([x] \cdot \{x\} |x|) \cdot dx = \int_{2}^{3} (2(x-2) x) \, dx = \left(\frac{x^2}{2} 4x\right)_{2}^{3} = \frac{-3}{2}$
 - (C) $[x] \cdot \{x\} = -1$ $x \le 0$ $x = -3 + \frac{1}{3}, -2 + \frac{1}{2}$
 - (D) $l = \lim_{x \to 4^+} f(x) = \lim_{x \to 4^+} ([x]\{x\} |x|) = -4$
- **4.** (A) $\lim_{x \to \infty} \left(\frac{x^2 + 2x 1}{2x^2 3x 2} \right)^{\frac{2x + 1}{2x 1}} = \frac{1}{2}$
 - (B) $\lim_{x \to 0} \frac{\log_{\sec x/2} \cos x}{\log_{\sec x} \cos \frac{x}{2}} = \lim_{x \to 0} (\log_{\sec \frac{x}{2}} \cos x)^2 = \lim_{x \to 0} \left(\frac{\ln \cos x}{\ln \sec x/2}\right)^2 = 2$



- (D) $\sin x \neq \frac{1}{3}, \frac{2}{3}, \frac{3}{3}$
- 5. $f(1^+) = f(1^-) = f(1) \Rightarrow b = 0$

$$f(3^-) = f(3^+) = f(3)$$

$$3 = 9p + 3q + 2 \Rightarrow 3p + q = 0$$

$$f'(x) = 2ax - a \qquad x < 1$$

$$= 1 \qquad 1 \le x < 3$$

$$= 2px + q \qquad x > 3$$

$$f'(3^+) = f'(3^-) = f'(3)$$

 $6p + q = 1 \Rightarrow p = \frac{1}{3}, q = -1$
 $f'(1^+) \neq f'(1^-)$
 $a \neq 1$

Exercise-5: Subjective Type Problems

1.
$$f(x)$$
 is discontinuous at $x = 1$, $|f(x)|$ is diff. every where

$$f(1) = -f(1^+) = -f(1^-)$$

$$\Rightarrow$$
 3 = $-(0+b)$

$$\Rightarrow$$
 $b=-3$

$$f'(1^+) = -f'(1^-)$$

(as | f(x) | is differentiable every where)

··· '2 - r M - troudle toper (x ° ?))

$$1 = -(2a - a) \implies a = -1$$

Continuous at x = 3,

$$5 = 9p + 3q + 2$$

$$\Rightarrow$$

$$3p+q=1$$

f'(x) is continuous at x=3

$$f'(3^-) = f'(3^+)$$

$$6p + q = 1$$

On solving (1) & (2) we get, p = 0, q = 1

So,
$$|a+b+p+q| = |-1-3+0+1| = 3$$

2.
$$\sin^{-1} y = 8 \sin^{-1} x$$

$$\frac{y'}{\sqrt{1-y^2}} = \frac{8}{\sqrt{1-x^2}}$$

$$(1-x^2)(y')^2 = 64(1-y^2)$$

$$(1-x^2)y'' - xy' = -64y$$

3.
$$yy' = 4a$$

$$(y')^2 + yy'' = 0$$

4.
$$f(x)$$
 is discontinuous at $x = -\sqrt{3}$, $-\sqrt{2}$, $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$, $\sqrt{8}$ $\sin \pi x = 0$ at $x = -2$, -1 , 0 , 1 , 2 , 3

So, continuous at these points.

5. Let
$$f'(x) = K$$

$$\Rightarrow f(x) = Kx + c$$

$$\Rightarrow f(9) - f(-3) = 12K$$

Maximum value of f(9) - f(-3) = 96

6.
$$g(x) = \sin x^3 - x^3 + 1$$
 $x \ge 1$
 $= \sin x^3 + x^3 - 1$ $0 \le x < 1$
 $= -\sin x^3 - x^3 - 1$ $-1 \le x < 0$
 $= -\sin x^3 + x^3 + 1$ $x \le -1$

Function is not differentiable at x = -1, 1

7.
$$F(x) = g(x)$$
 $x > 1$ $x = 1$

$$= \frac{f(x) + g(x)}{2}$$
 $x = 1$

$$= f(x)$$
 $-1 < x < 1$

$$= \frac{f(x) + g(x)}{2}$$
 $x = -1$

$$= g(x)$$
 $x < -1$

If F(x) is continuous at x = 1

$$F(1^+) = F(1) = F(1^-)$$

$$b = a + 3$$

If F(x) is continuous at x = -1

$$F(-1^-) = F(-1) = F(-1^+)$$

$$a+b=5$$

8.
$$f^{-1}(x) = 2 - x$$
 $2 \le x \le 5$
= $2 + x$ $-2 < x < 2$

9.
$$f(x) + 2f(1-x) = x^2 + 2$$

$$f(1-x) + 2f(x) = (1-x)^2 + 2 \Rightarrow f(x) = \frac{(x-2)^2}{3}$$

10.
$$g(x) = x(x-3)(x-7)$$

 $f(g(x)) = \operatorname{sgn}(x(x-3)(x-7))$

11.
$$\frac{d^2}{dx^2}(\sin^2 x - \sin x + 1) = -4\sin^2 x + \sin x + 2$$

12.
$$f(x) = a\cos(\pi x) + b$$

 $f'(x) = -a\pi\sin(\pi x)$

$$\int_{1/2}^{3/2} f(x) dx = -\frac{2a}{\pi} + b = \frac{2}{\pi} + 1 \implies a = -1, b = 1$$

13.
$$\alpha'(x) = f'(x) - 2f'(2x)$$
; $\beta'(x) = f'(x) - 4f'(4x)$
 $\alpha'(1) = f'(1) - 2f'(2) = 5$

Continuity, Differentiability and Differentiation

$$\alpha'(2) = f'(2) - 2f'(4) = 7$$

 $\beta'(1) = f'(1) - 4f'(4) = \alpha'(1) + 2\alpha'(2) = 5 + (2 \times 7) = 19$
 $\beta'(1) - 10 = 19 - 10 = 9$

14.
$$g(f(x)) = x$$

$$g'(f(x))f'(x) = 1$$

$$f(1) = -7/6$$

$$\therefore x=1$$

$$g'\left(-\frac{7}{6}\right)f'(1)=1$$

$$g'\left(-\frac{7}{6}\right) = \frac{1}{f'(1)}$$

$$f'(x) = -4 \cdot e^{\frac{1-x}{2}} \left(-\frac{1}{2}\right) + x^2 + x + 1$$

$$f'(1) = 2 + 1 + 1 + 1 = 5$$

$$h(x) = ax^{-\frac{5}{4}} + bx^{\frac{1}{4}}$$

$$h'(x) = -\frac{5a}{4}x^{\frac{-9}{4}} + \frac{b}{4}x^{\frac{-3}{4}}$$

$$h'(5) = 0 \implies -\frac{5a}{4} \cdot 5^{-9/4} + \frac{b}{4} \cdot 5^{-3/4} = 0$$

$$\Rightarrow 5a \cdot 5^{-3/2} = b$$

$$\Rightarrow \frac{a}{b} = 5^{1/2}$$

$$\left(\frac{a}{b}\right)^2 = 5$$

$$\frac{a^2}{5b^2g'\left(\frac{-7}{6}\right)} = \frac{5}{5 \times \frac{1}{5}} = 5$$

16. Let

$$\lim_{x\to\infty}\left(f(x)+\int_0^x f(t)\,dt\right)=l$$

$$\lim_{x\to\infty}\frac{\left(e^x\int\limits_0^x f(t)\,dt\right)}{(e^x)}=l$$

71

$$\Rightarrow \lim_{x \to \infty} \frac{e^x \int_0^x f(t) dt}{e^x} = l$$

$$\Rightarrow \lim_{x \to \infty} \int_0^x f(t) dt = l$$

$$\Rightarrow \lim_{x \to \infty} \int_0^x f(t) dt = l$$

From (1) and (2) we get, $\lim_{x\to\infty} f(x) = 0$

17.
$$f(0) = 0, f'(0) = 1, f''(0) = 1, f'''(0) = 2$$

 $g(f(x)) = x$ \Rightarrow $g'(f(x))f'(x) = 1$
 \Rightarrow $g''(f(x)) = \frac{-f''(x)}{(f'(x))^3}$
 \Rightarrow $g'''(f(x))f'(x) = -\left[\frac{(f'(x))^3 \cdot f'''(x) - 3(f''(x))^2(f'(x))^2}{(f'(x))^6}\right]$

Put
$$x = 0$$

 $g'''(0) 1 = -\left[\frac{1 \times 2 - 3 \times 1}{1}\right] = 1$

19.
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{f\left(x\left(1 + \frac{h}{x}\right)\right) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{f(x)}{1 + h/x} + \frac{f\left(1 + \frac{h}{x}\right)}{x} - f(x)}{h} = \lim_{h \to 0} \frac{f(x)\left(-\frac{h}{x}\right)}{h\left(1 + \frac{h}{x}\right)} + \frac{f\left(1 + \frac{h}{x}\right)}{hx}$$

$$= \frac{-f(x)}{x} + \lim_{h \to 0} \frac{f\left(1 + \frac{h}{x}\right) - f(1)}{x^2\left(\frac{h}{x}\right)} \qquad \text{(as } f(1) = 0\text{)}$$

$$f'(x) = \frac{-f(x)}{x} + \frac{f'(1)}{x^2}$$

$$xf'(x) + f(x) = \frac{1}{x}$$

$$\frac{d}{dx}(xf(x)) = \frac{1}{x}$$

$$xf(x) = \int \frac{1}{x} dx$$

$$xf(x) = \ln x + k$$

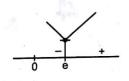
73

Put x = 1, we get k = 0

$$f(x) = \frac{\ln x}{x}$$

$$H(x) = \frac{1}{f(x)} = \frac{x}{\ln x}$$

$$H'(x) = \frac{\ln x \cdot 1 - 1}{(\ln x)^2} \qquad H(x) \ge e$$



$$H(e) = e$$

$$\lim_{x\to e} \left[\frac{1}{f(x)} \right] = 2$$

21.
$$f'(x) = \tan^{-1}(x^2) + \frac{2x^2}{1+x^4} + 4x^3$$

$$f''(x) = \frac{2x}{1+x^4} + 2\left(\frac{(1+x^4) \cdot 2x - x^2(4x^3)}{(1+x^4)^2}\right) + 12x^2$$

$$\frac{dy}{dy} \frac{dy}{d\theta} = \frac{3}{1+x^4} + \frac{3}{1+x^4}$$

22.
$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = -3\sin\theta\cos\theta = -\frac{3}{2}\sin 2\theta$$

$$\frac{d^2y}{dx^2} = \frac{-3\cos 2\theta}{\sin \theta}$$

$$dx^{2} \sin \theta$$
23. Let $8x - 16 = t^{2} \Rightarrow \sqrt{\frac{t^{2} + 16 + 8t}{8}} + \sqrt{\frac{t^{2} + 16 - 8t}{8}} = \frac{|t + 4| + |t - 4|}{2\sqrt{2}}$

24.
$$f(x) = [x]$$

$$0 < x < 1$$

$$1 \le x < \frac{5}{4}$$

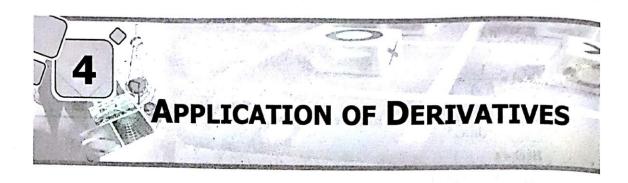
$$= \left| x - \frac{3}{2} \right| \qquad \qquad \frac{5}{4} \le x < 2$$

$$\frac{5}{4} \le x < 2$$

No. of points where f(x) is non-differentiable are three.

$$x = 1, \frac{5}{4}, \frac{3}{2}$$
 send that $C = x$ and agreement to address only

Chapter 4 - Application of Derivatives



Exercise-1: Single Choice Problems

- **1.** Maximum value of f(x) = 3Minimum value of f(x) = -1
- **2.** f''(x) = 6x 6

$$f'(x) = 3x^2 - 6x + 3$$

$$(:: f'(2) = 3)$$

$$f'(x) = 3x^2 - 6x + 3$$
 $(\because f'(2) = 3)$
 $f(x) = x^3 - 3x^2 + 3x - 1$ $(\because f(2) = 1)$

$$(\because f(2) = 1)$$

5.
$$V = \frac{4}{3}\pi(10+T)^3 - \frac{4}{3}\pi(10)^3$$

$$\frac{dV}{dt} = 4\pi (10 + T)^2 \frac{dT}{dt}$$

$$\Rightarrow \frac{dT}{dt} = \frac{1}{18\pi} \quad (\because T = 5 \text{ cm})$$

6.
$$g(x) = \frac{(|x|-1)(|x|-2)}{(|x|-3)(|x|-4)}$$

g(x) is an even function so there is an extrema at x = 0.

Also number of extrema for x > 0 will be equal to number of extrema for x < 0for x > 0

$$g(x) = \frac{(x-1)(x-2)}{(x-3)(x-4)}$$

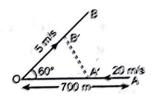
Number of extrema = 2

Total extrema = 5

Application of Derivatives

7.
$$A'B' = \sqrt{\left(700 - \frac{45}{2}t\right)^2 + \frac{75}{4}t^2}$$

 $(A'B')_{\min} \text{ at } t = 30 \text{ sec}$



8.
$$f(0^-) \ge f(0) \Rightarrow a \ge 3$$

9.
$$f(x) = \frac{1}{x^2 - 2 + \frac{\sin(x-k)}{x-k}}, \quad x \le k$$

$$\Rightarrow f'(k^+) > f(k), f'(k^-) > f(k)$$

So,
$$\lim_{x \to k^{+}} (a^2 - 2) + \frac{\sin(x - k)}{(x - k)} = a^2 - 1 > 3$$

$$a^2 > 4$$

10.
$$\frac{dy}{dx} = 3x^2 - 4x + C_1$$

 $y = x^3 - 2x^2 + C_1x + C_2$

$$y = x^3 - 2x^2 + C_1x + C_2$$
Also, $\frac{dy}{dx}\Big|_{at \ x=1} = 0$ and $y\Big|_{at \ x=1} = 5$

$$= \frac{dy}{dx}\Big|_{at \ x=1} = \frac{1 - 0.2 \times 10^{-3}}{2} = \frac{1$$

11.
$$m_1 = \frac{dy}{dx} \bigg|_{at (1, 2)} = 2a + b$$

$$m_2 = g'(x) = \frac{dy}{dx} \Big|_{at(-2, 2)} = 2 \implies 2a + b = -\frac{1}{2} \implies 2a + b = -\frac{1}{2}$$

Also,
$$2 = a + b + \frac{7}{2}$$

12.
$$18y \frac{dy}{dx} = 3x^2$$

$$\frac{dy}{dx} = \frac{3x^2}{18y}$$

$$\Rightarrow \frac{a^2}{6b} = 1 \Rightarrow a^2 = 6b$$

Also,
$$9b^2 = a^2$$

13.
$$\frac{dy}{dx} = 3x^2 - 4x + 6$$

Also,
$$9b^2 = a^2$$

13. $\frac{dy}{dx} = 3x^2 - 4x + c$

at $x = 1$, $\frac{dy}{dx} = 0$ $\Rightarrow c = 1$

Solution of Advanced Problems in Mathematics for JEE

$$\frac{dy}{dx} = 3x^2 - 4x + 1$$

$$y = x^3 - 2x^2 + x + d$$
at $x = 1, y = 5$ $\Rightarrow 5 = 1 - 2 + 1 + d$

$$\Rightarrow d = 5$$

14. A(0,2)

$$5\alpha^{2}(3x^{2}) + 10\alpha(2x) + 1 + 2\frac{dy}{dx} = 0 \implies \frac{dy}{dx} = \frac{-15\alpha^{2}x^{2} - 20\alpha x - 1}{2}$$

$$\Rightarrow \frac{dy}{dx} \text{ at } A = -\frac{1}{2}$$

www.jeebooks.in

Equation of normal at A is y = 2x + 2

Let normal meets the curve at B

$$5\alpha^{2}x^{3} + 10\alpha x^{2} + x + 4x + 4 - 4 = 0$$
$$5x(\alpha x + 1)^{2} = 0$$
$$x = -\frac{1}{\alpha}$$

So,
$$B\left(\frac{-1}{\alpha}, \frac{-2}{\alpha} + 2\right)$$

$$\therefore \text{ Slope of tangent at } B = \frac{-15 + 20 - 1}{2} = 2$$

15.
$$f(x) = \cos x + \frac{1}{2}\cos 2x - \frac{1}{3}\cos 3x$$

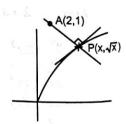
$$f'(x) = -\sin x - \sin 2x + \sin 3x = 2\sin x(2\cos x + 1)(\cos x - 1) = 0$$

16. Closest distance exist always alone the normal

$$\therefore \frac{1 - \sqrt{x}}{2 - x} \times \frac{dy}{dx} = -1$$

$$\frac{1 - \sqrt{x}}{2 - x} \times \frac{1}{2\sqrt{x}} = -1$$
Let $\sqrt{x} = t$

$$x = \frac{2 + \sqrt{3}}{2}$$



11. $m_1 = \frac{dy}{dx} \Big|_{x=x_1=x_1} = 2x_1 + 5$

17. Let $x = 2\sin\theta$

$$y = \ln\left(\frac{2+2\cos\theta}{2-2\cos\theta}\right) - 2\cos\theta = \ln\left(\frac{2\cos^2\theta/2}{2\sin^2\theta/2}\right) - 2\cos\theta$$
$$= 2\ln\left(\cot\frac{\theta}{2}\right) - 2\cos\theta$$

Application of Derivatives

$$\frac{dy}{d\theta} = \frac{1}{\cot \theta/2} \left(-\csc^2 \frac{\theta}{2} \right) + 2\sin \theta$$
(Fig. 1)

$$\frac{dy}{d\theta} = \frac{-2}{\sin \theta} + 2\sin \theta = \frac{-2\cos^2 \theta}{\sin \theta}$$

$$\frac{dx}{d\theta} = 2\cos\theta; \quad \frac{dy}{dx} = -\cot\theta$$

$$\left(y-2\ln\left(\cot\frac{\theta}{2}\right)+2\cos\theta\right)=-\cot\theta(x-2\sin\theta)$$

$$T = \left(0, 2\ln\left(\cot\frac{\theta}{2}\right) - 2\cos\theta + 2\cos\theta\right)$$

$$P = \left(2\sin\theta, 2\ln\cot\frac{\theta}{2} - 2\cos\theta\right)$$

$$PT^2 = (\sqrt{4\sin^2\theta + 4\cos^2\theta}) = 4$$

18.
$$g'(x) = (2x^2 - \ln x) f(x)$$

$$f'(x) = \frac{1}{\ln x^3} 3x^2 - \frac{1}{\ln x^2} 2x$$

$$f'(x) = \frac{x^2 - x}{\ln x}$$

$$f'(x) = \frac{x(x-1)}{\ln x} > 0 \ \forall \ x > 1; \quad f(x) > f(1) \implies f(x) > 0 \ \forall \ x > 1$$

For g(x) is increasing

$$g'(x) > 0 \implies 2x^2 - \ln x > 0 \text{ as } (f(x) > 0)$$

Let
$$H(x) = 2x^2 - \ln x$$

$$H'(x) = 4x - \frac{1}{x} = \frac{4x^2 - 1}{x} > 0$$
 when $x > 1$

$$H(x) > H(1) \Rightarrow H(x) > 2$$

$$g'(x) > 0 \ \forall \ x \in (1, \infty)$$

$$g(x)$$
 is increasing on $(1, \infty)$.

19.
$$f'(x) = 3x^2 + 12x + a$$

$$f'(x) < 0$$
 in $(-3, -1)$

Product of the roots =
$$\frac{a}{3} = 3 \implies a = 9$$
 11.1 A meadown on

20.
$$f(x) = \tan^{-1}\left(\frac{1-x}{1+x}\right)$$

$$f'(x) = \frac{1}{1 + \left(\frac{1 - x}{1 + x}\right)^2} \left(\frac{-2}{(1 + x)^2}\right) = \frac{2}{2(1 + x^2)} = \frac{1}{1 + x^2} > 0$$

77

f'(x) is decreasing $\forall x \in R$

So, in [0,1]
$$f(0) = \tan^{-1}(1) = \frac{\pi}{4}$$
 (max)

$$f(1) = 0 \text{ (min)}$$

21.
$$f'(x) = 3x^2 + 2(a+2)x + 3a$$

$$D \le 0$$

$$a^2 - 5a + 4 \le 0$$

$$\alpha \in [1, 4]$$

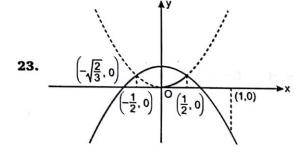
22.
$$f'(x) = 0$$

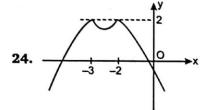
$$\cos^2 x - \sqrt[3]{x} + x^{1/3} - \frac{1}{2} = 0$$

$$\cos^2 x = \frac{1}{2}$$

$$\cos x = \pm \frac{1}{\sqrt{2}}$$

: total number is 12.





$$b^2 + 1 \ge 2$$

25. f(x) is continuous and differentiable in [-1, 1].

26.
$$\frac{\cos x_1}{x_1} = -\sin x_1 \implies x_1 = -\cot x_1$$

Point
$$(x_1, \cos x_1)$$
 always lie on $\frac{1}{y^2} = \frac{1}{x^2} + 1$

Application of Derivatives

70

27.
$$x + \frac{a}{x^2} > 2 \ \forall \ x \in (0, \infty)$$

$$f(x) = x^3 - 2x^2 + a > 0 \ \forall \ x \in (0, \infty)$$

$$f'(x) = 3x^2 - 4x = 3x\left(x - \frac{4}{3}\right)$$

Minimum value at $x = \frac{4}{3}$

$$\frac{64}{27} - 2\left(\frac{16}{9}\right) + a > 0 \implies a > \frac{32}{27}$$

29.
$$f'(x) = \cos^2 x + \cos x + 2 > 0$$

$$f(x)_{\min} = f(0) = 0$$

$$f(x)_{\max} = f(2\pi) = 5\pi$$

31.
$$f(x) = x^3 - 3x + c = 0$$

$$f'(x) = 3(x^2 - 1)$$

$$\Rightarrow f(1) f(-1) < 0$$

$$(c-2)(2+c)<0$$

32.
$$f'(x) = e^x(x-1)(x-2) < 0$$

33.
$$\frac{dy}{dx} = 3ax^2 + 2bx + c = 0$$
 has one root $\Rightarrow D = b^2 - 3ac = 0 \Rightarrow b^2 = 6$

34. Let
$$x = \tan \theta$$
 then $y = \cos^2 \theta$

$$\left| \frac{dy}{dx} \right| = |2\sin\theta\cos^3\theta|$$

$$\left| \frac{dy}{dx} \right|_{\text{max}}$$
 at $\theta = \frac{\pi}{6}$

35.
$$h(x) = f(x) - g(x) = 2x - 3\sin x + x\cos x$$

$$h(0) = 0$$

$$h'(x) = 2 - 2\cos x - x\sin x$$

$$h'(0) = 0$$

$$h''(x) = \sin x - x \cos x$$
 and α does not avislage as and

$$h''(0) = 0$$

$$h'''(x) = x \sin x > 0 \ \forall \ x \in \left(0, \frac{\pi}{2}\right)$$

36.
$$f(x) = 2 \tan^{-1}(g(x))$$
 $|g(x)| \le 1$

$$=\pi-2\tan^{-1}g(x)$$

$$= -\pi - 2 \tan^{-1} g(x)$$

$$g(x) < -1$$

$$f'(x) = \frac{2g'(x)}{1 + (g(x))^2} \qquad |g(x)| < 1$$
$$= -\frac{2g'(x)}{1 + (g(x))^2} \qquad |g(x)| > 1$$

37.
$$\lim_{x \to e^a} \left[\frac{7}{3} \left[\frac{\ln(1+7f(x))}{7f(x)} \right] - \frac{1}{3} \left(\frac{\sin f(x)}{f(x)} \right) \right] = 2$$

38. If f(x) is strictly decreasing for all x,

$$f'(x) = \log_{1/3}(\log_3(\sin x + a)) \le 0$$

$$\Rightarrow$$
 $\sin x + a \ge 3 \ \forall \ x \in R$

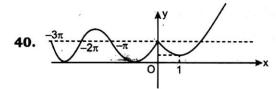
$$\Rightarrow a \ge 4$$

39.
$$f(x) = a \ln |x| + bx^2 + x$$

$$f'(x) = \frac{a}{x} + 2bx + 1 = \frac{2bx^2 + x + a}{x}$$

if x = 1 and x = 3 are point of extrema.

$$\Rightarrow -\frac{1}{2b} = 4 \text{ and } \frac{a}{2b} = 3$$



f(x) has local maximum at x = 0.

41.
$$f(x) = \int_{1}^{x} (t-a)^{2n} (t-b)^{2m+1} dt$$

$$f'(x) = (x-a)^{2n} (x-b)^{2m+1}$$

No sign change of f'(x) about x = a.

f'(x) will change sign from negative to positive at $x = b \Rightarrow$ Point of minima.

43. Let point *P* on the curve $y^2 = x^3$ is $P(t_1^2, t_1^3)$.

Equation of tangent at $P(t_1^2, t_1^3)$ is

$$y-t_1^3=\frac{3}{2}t_1(x-t_1^2)$$

If this intersect the curve again at $Q(t_2^2, t_2^3)$

81

$$\Rightarrow t_2 = -\frac{t_1}{2}$$

$$\frac{\tan \alpha}{\tan \beta} = \frac{(3t_1/2)}{(3t_2/2)} = -2$$

44.
$$y^2 = \alpha x^3 - \beta$$

if (2,3) is lie on the curve

$$8\alpha - \beta = 9 \qquad \dots (1$$

Slope of normal at (2,3)

$$-\frac{1}{4} = -\frac{1}{2\alpha} \implies \alpha = 2$$

45. Equation of tangent at (0, 1) to the curve y - 1 = kx meet x-axis at (a, 0) then

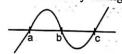
$$-2 \le -\frac{1}{k} \le -1 \implies k \in \left[\frac{1}{2}, 1\right]$$

46.
$$f(x) = \int_{0}^{\sqrt{x}} e^{\frac{-u^2}{x}} du = \sqrt{x} \int_{0}^{1} e^{-t^2} dt$$

where
$$t = \frac{u}{\sqrt{x}}$$

$$\Rightarrow f(x) = K\sqrt{x}, \quad K > 0$$

47. $f''(\alpha) = 0 \implies x = \alpha$ is the point where concavity changes.



48.
$$f(x) = x^6 - x - 1$$

$$f'(x) = 6x^5 - 1 > 0 \ \forall \ x \in [1, 2]$$

If
$$f(1) = -1 < 0$$
 and $f(2) = 2^6 - 3 > 0$ then $f(x)$ has one root in [1, 2].

49. Every line passing from (a, b) is normal to the circle $(x - a)^2 + (y - b)^2 = k$

50.
$$f'(x) = \cos x(3\sin^2 x - m) = 0$$

$$\sin^2 x = \frac{m}{3} \implies 0 < \frac{m}{3} < 1$$

51. Let
$$y = x^{1/x}$$

$$y' = x^{(1/x)-2}(1-\ln x)$$

$$f(x)$$
 is increasing

and
$$f(x)$$
 is decreasing

Solution of Advanced Problems in Mathematics for JEE

Stope of normal ar (2, 3)

45. Equation of a agent at (0, 1) with a

52. Let
$$y = mx$$

Point of tangency be
$$(x_1, y_1)$$

$$\Rightarrow mx_1 = x_1^3 + x_1 + 16 \& m = 3x_1^2 + 1$$

$$\Rightarrow x_1(3x_1^2+1) = x_1^3 + x_1 + 16$$

$$x_1 = 2$$

$$m = 13$$

53.
$$y' = 3x^2 - 6x + 6$$

$$y'' = 6x - 6 = 0$$

$$x = 1$$

$$y'=3$$

54. Let
$$H(x) = \ln(f(x) + f'(x) + \dots + f^n(x)) - x$$

$$\Rightarrow$$

$$H(a) = H(b)$$

$$\Rightarrow$$

$$H'(c) = 0$$

47. The box x = a is the point where concavity changes.

$$\Rightarrow \frac{f'(c) + f''(c) + \dots + f^{n+1}(c)}{f(c) + f'(c) + \dots + f^{n}(c)} - 1 = 0$$

$$\Rightarrow$$

$$f^{n+1}(c) = f(c)$$

55.
$$h(x) = g(x) + x$$

$$\Rightarrow h'(x) = g'(x) + 1$$

$$\Rightarrow$$
 $g'(x) = h'(x) - 1$

$$\Rightarrow g''(x) = h''(x)$$

$$\Rightarrow h''(x) - 3(h'(x) - 1) > 3$$

$$\Rightarrow h''(x) - 3h'(x) > 0$$

$$\Rightarrow \frac{d}{dx}(e^{-3x}h'(x)) > 0$$

Let
$$P(x) = e^{-3x}h'(x)$$
 on the second such as $f(x) \in \mathbb{R}$ and $f(x) \in \mathbb{R}$ between $f(x) \in \mathbb{R}$

49. very line pasying from
$$(a,b)$$
 is normal to the arcles $c=c+(-B)=0$ (x) $q=c$

 \Rightarrow P(x) is an increasing function.

$$P(0) = h'(0) = 0$$

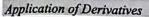
$$\Rightarrow P(x) > 0 \forall x > 0$$

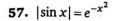
$$\Rightarrow h'(x) > 0 \forall x > 0$$

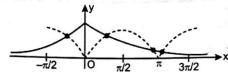
 \Rightarrow h(x) is an increasing function $\forall x > 0$

56.
$$\frac{dy}{dx} = -\frac{c}{(x+1)^2} = -1 \Rightarrow (x+1)^2 = c$$

Point $(\sqrt{c} - 1, \sqrt{c})$ lie on the line $x + y = 3 \Rightarrow \sqrt{c} = 2$

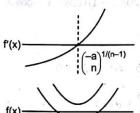






60.
$$x^n + ax + b = 0$$

 x is even.
 $nx^{n-1} + a = f'(x)$



61.
$$f(b) = \left| \sin x + \frac{2}{3 + \sin x} + b \right|_{\max} \forall x \in R$$

$$\sin x = t$$

$$g(t) = t + \frac{2}{3+t}$$
 $t \in [-1, 1]$

$$g'(t) = 1 - \frac{2}{(3+t)^2} > 0$$

$$(3+t)^2-2>0$$

$$(3+t-\sqrt{2})(3+t+\sqrt{2})>0$$

$$g(t) = t + \frac{2}{3+1}$$
 increasing $\forall \in [-1, 1]$

$$g(t)_{\max} = \frac{3}{2}$$

$$g(t)_{\min} = 0$$

$$g(t)_{\min} = 0$$

$$f(b) = \begin{vmatrix} \frac{3}{2} + b & \text{if } b \ge -\frac{3}{4} \\ -b & \text{if } b \ge -\frac{3}{4} \end{vmatrix}$$

$$b < -\frac{3}{4}$$

$$\min. \text{ of } f(b) = -\left(\frac{-3}{4}\right) = \frac{3}{4}$$

$$b < -\frac{3}{4}$$

min. of
$$f(b) = -\left(\frac{-3}{4}\right) = \frac{3}{4}$$

62.
$$y = \frac{x}{1+x^2} \Rightarrow \frac{dy}{dx} = \frac{1-x^2}{(1+x^2)^2}$$

$$\frac{\log_2(x)^2\log(x)}{\log_2(x)} = \frac{\log_2(x)^2\log_2(x)}{\log_2(x)} = \frac{$$

$$-3-\sqrt{2}$$
 $-3+\sqrt{2}$ -1 1

63.
$$f^{-1}(x) = 2\cos^{-1}\left(\frac{x}{3}\right)$$

$$\frac{d}{dx}f^{-1}(x) = \frac{-2}{\sqrt{1-\frac{x^2}{9}}}\left(\frac{1}{3}\right)$$

64.
$$f(x) = \sin x + \tan x - 2x$$

 $f'(x) = \cos x + \sec^2 x - 2 = 0$
 $\cos^3 x - 2\cos^2 x + 1 = 0 \implies (\cos x - 1)(\cos^2 x - \cos x - 1) = 0$
 $\cos x = 1, \frac{1 - \sqrt{5}}{2}$

65.
$$\frac{a+2c}{b+3b} + \frac{4}{3} = 0$$
 $\Leftrightarrow 3a+4b+6c+12b=0$ $\Leftrightarrow \frac{1}{4}a + \frac{b}{3} + d = 0$

Consider $f(x) = \frac{ax^4}{4} + \frac{bx^3}{3} + \frac{cx^2}{2} + dx$ then $f(0) = 0 = f(1)$

f(x) satisfies the conditions of Rolle's theorem in [0, 1]. Hence, f'(x) = 0 has at least one solution in (0, 1).

66.
$$f'(x) = \phi(x) \cdot (x-2)^2$$

 $\phi(2) > 0 \Rightarrow f'(x) > 0 \Rightarrow f(x) \uparrow$
 $\phi(2) < 0 \Rightarrow f'(x) < 0 \Rightarrow f(x) \downarrow$
67. $f(1) = f(2) \Rightarrow a + b = 5 - 2a + b = 27 \Rightarrow a = 6$

67.
$$f(1) = f(3) \Rightarrow a + b - 5 = 3a + b - 27 \Rightarrow a = 11$$

 $f'(c) = 3c^2 - 12c + a = 0 \Rightarrow b \in R$

70. Let
$$x = \frac{3at}{2^{2/3}}$$
, $y = at^{3/2}$

$$\frac{dy}{dx} = \frac{2\left(\frac{9a^2t^2}{2^{4/3}}\right)}{9a^2t^{3/2}} = -\cot\alpha \Rightarrow \sqrt{t} = -2^{1/3}\cot\alpha$$
and $P = \cos\alpha \left(\frac{3at}{2^{2/3}} - \frac{at^{3/2}}{-\cot\alpha}\right)$

$$\Rightarrow \frac{P}{a} = \cos\alpha\cot^2\alpha$$

85

Exercise-2: One or More than One Answer is/are Correct

1. Equation of tangent to $y = x^3$

$$y-x_1^3=3x_1^2(x-x_1)$$

Equation of tangent to $y = x^{1/3}$ is

$$y - x_1 = 3x_1(x - x_1)$$
ingent to $y = x^{1/3}$ is
$$y - x_2^{1/3} = \frac{1}{3x_2^{2/3}}(x - x_2)$$
its represent same line

If these tangents represent same line

$$\frac{1}{1} = \frac{9x_1^2x_2^{2/3}}{\frac{1}{3}} = \frac{-2x_1^3}{\frac{2}{3}x_2^{1/3}} \Rightarrow x_1 = \pm \frac{1}{\sqrt{3}}$$

2. (a) $f'(C_1) = \frac{f(4) - f(0)}{4 - 0} = \frac{1}{4}$; $C_1 \in (0, 4)$

(c)
$$f'(C_1) = \frac{f(8) - f(0)}{8 - 0} = \frac{1}{8}$$
; $C_1 \in (0, 8)$
 $f(C_2) = f(8) = 1$

(d) Let $g(x) = \int_{0}^{x^3} f(t) dt$

Let
$$g(x) = \int_{0}^{8} f(t) dt$$

$$\Rightarrow g(0) = 0, g(2) = \int_{0}^{8} f(t) dt$$

$$g'(\alpha) = 3\alpha^{2} f(\alpha^{3}) = \frac{g(2) - g(0)}{2} \quad \alpha \in (0, 2)$$

$$g'(\alpha) = 3\alpha^2 f(\alpha^3) = \frac{g(2) - g(0)}{2}$$
 $\alpha \in (0, 2)$

and
$$g'(\beta) = 3\beta^2 f(\beta^3) = \frac{g(2) - g(0)}{2}$$
 $\beta \in (0, 2)$

$$g'(\alpha) + g'(\beta) = g(2) - g(0) = \int_{0}^{8} f(t) dt$$

4. $f(x) = 2x^4 + x^4 \sin \frac{1}{x}$

$$f'(x) = 8x^3 + 4x^3 \sin \frac{1}{x} - x^2 \cos \frac{1}{x}$$

5. $-1 \le f''(x) \le 1$

$$-x \le f'(x) \le x \qquad (\because f'(0))$$

$$-x \le f'(x) \le x \qquad (\because f'(0) = 0)$$

$$-\frac{x^2}{2} \le f(x) < \frac{x^2}{2} \qquad (\because f(0) = 0)$$

6.
$$f''(x) > 0 \ \forall \ x \in [-3, 4]$$

 $\Rightarrow f'(x) \text{ is increasing for } x \in [-3, 4]$

7.
$$f''(x) > 0 \forall x \in [0,2]$$

$$\Rightarrow f'(x) \uparrow$$

$$f'(C_1) = \frac{f(1) - f(0)}{1 - 0}$$
, $C_1 \in (0, 1)$ and $f'(C_2) = \frac{f(2) - f(1)}{2 - 1}$, $C_2 \in (1, 2)$

$$f'(C_1) < f'(C_2) \Rightarrow f(0) + f(2) > 2f(1)$$

 $f(C_1) < f(C_2) \Rightarrow f(0) + f(2) > 2f(1)$ Similarly applying LMVT between $\left[0, \frac{2}{3}\right]$ and $\left[\frac{2}{3}, 2\right]$

$$\frac{f(2) - f\left(\frac{2}{3}\right)}{\frac{4}{3}} > \frac{f\left(\frac{2}{3}\right) - f(0)}{\frac{2}{3}} \implies 2f(0) + f(2) > 3f\left(\frac{2}{3}\right)$$

8. Let
$$g''(x) = a(x-1)$$

$$g'(x) = \frac{ax^2}{2} - ax + b$$

$$g'(-1) = 0 \Rightarrow b = -\frac{3a}{2}$$

$$g(x) = \frac{ax^3}{6} - \frac{ax^2}{2} + bx + c \implies g(x) = x^3 - 3x^2 - 9x + 5$$

$$(: g(-1) = 10, g(3) = -22)$$

9.
$$f(x) = 2x^3 - 3(\lambda + 2)x^2 + 2\lambda x + 5$$

$$f(x) = 2x^3 - 3(\lambda + 2)x^2 + 2\lambda x + 5$$

$$f'(x) = 6x^2 - 6(\lambda + 2)x + 2\lambda = 0 \text{ has two real roots, then}$$

$$D > 0 \implies 3\lambda^2 + 8\lambda + 12 > 0$$

$$\Rightarrow \lambda \in R$$

10.
$$f(x) = 1 + x \ln(x + \sqrt{1 + x^2}) - \sqrt{1 + x^2}$$

$$f'(x) = \ln(x + \sqrt{1 + x^2})$$

$$f'(x) \ge 0$$
 for $\forall x \in [0, \infty)$

$$f'(x) \le 0$$
 for $\forall x \in (-\infty, 0]$

11.
$$f(x, y) = x^m (k - x)^n$$

$$f'(x, y) = mx^{m-1}(k-x)^n - x^m n \cdot (k-x)^{n-1} = 0$$

$$\Rightarrow x = \frac{mk}{m+n}$$

Maximum value =
$$\frac{k^{m+n} \cdot m^m \cdot n^n}{(m+n)^{m+n}}$$

Application of Derivatives

12. Let line is tangent at $(3t_1^2, 2t_1^3)$ and normal at $(3t_2^2, 2t_2^3)$

$$\Rightarrow \frac{dy}{dx}\Big|_{3t_1^2, 2t_1^3} = t_1$$

So, slope of normal at $(3t_2^2, 2t_2^3) = -\frac{1}{t_2}$

$$\Rightarrow t_1 = -\frac{1}{t_2}$$

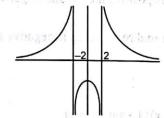
$$\Rightarrow t_1 = \frac{2t_1^3 + \frac{2}{t_1^3}}{3\left(t_1^2 - \frac{1}{t_1^2}\right)}$$

$$\Rightarrow t_1^2(t_1^4 - 3) = 2 \text{ or } t_1 = \pm \sqrt{2}$$

13. $m = \frac{dy}{dx}$

$$\frac{|my|}{x+y} = \frac{y}{x}$$
 then solve it.

14. First draw the graph $f(x) = \frac{1}{x^2 - 4}$



While drawing diff. possibilities of $y = ax^2 + bx + c$

We get possible intersections.

15.
$$y' = 3x_1^2$$

$$3x_1^2 = \frac{x_1^3 - 8}{x_1 - 2} \implies x_1 = -1 \text{ or } 2$$

$$y' = 3 \text{ or } y' = 12$$

16. Let
$$f(x) = x + \cos x - a$$

$$f'(x) = 1 - \sin x \ge 0 \ \forall \ x \in R$$

$$\Rightarrow$$
 $f(x)$ is increasing.

$$\Rightarrow x + \cos x - a = 0$$
 for one positive value of $x, a \in (1, \infty)$

87

17. Let
$$y = ax + b = f(x)$$
 $a \ne 0$
 $f^{-1}(x) = \frac{x - b}{a}$

(1)
$$m_1 = a, m_2 = \frac{1}{a}$$
 $\Rightarrow m_1 m_2 = 1$

(2)
$$m_1 = a, m_2 = \frac{-1}{a}$$
 $\Rightarrow m_1 m_2 = -1$

(3)
$$m_1 = -a, m_2 = \frac{1}{a}$$
 $\Rightarrow m_1 m_2 = -1$

(4)
$$m_1 = -a, m_2 = \frac{-1}{a}$$
 $\Rightarrow m_1 m_2 = 1$

18.
$$f'(x) = e^x (x^2 - 1)x^2 (x + 1)^{2011} (x - 2)^{2012}$$

= $e^x x^2 (x + 1)^{2012} (x - 1)(x - 2)^{2012}$

x = -1, 0, 2 are points of inflections and might be more points in (1, 2). x = 1 is point of minima (Answer can be given either d, ad, bd or abd)

19.
$$f(x) = \sin x + ax + b$$

$$f'(x) = \cos x + a$$

if a > 1 then f(x) is increasing.

So, only one real root, which is positive if b > 0 and negative if b > 0 if a < -1

f(x) is decreasing so only one real root, which is negative if b < 0.

20.
$$f''(c) = 0$$
 for $c \in (0, 1)$

$$f''(x) > 0$$
 for $x \in (0, c)$

$$f''(x) < 0$$
 for $x \in (c, 1)$

21.
$$f'(x) = 5 \sin x \cos x (\sin x - \cos x) (1 + \sin x \cos x)$$

Clearly,
$$f'(x) > 0 \ \forall \ x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$

$$f'(x) < 0 \ \forall \ x \in \left(0, \frac{\pi}{4}\right)$$

$$f(0) = 0, f\left(\frac{\pi}{2}\right) = 0$$

By Rolle's theorem $\exists c \in \left(0, \frac{\pi}{2}\right) \Rightarrow f'(c) = 0$

Clearly,
$$f(x) \ge f\left(\frac{\pi}{4}\right)$$

$$f(x) \ge 2\left(\frac{1}{\sqrt{2}}\right)^5 - 1 = 2\left(\frac{1}{4\sqrt{2}}\right) - 1 = \frac{1}{2\sqrt{2}} - 1 \text{ and } f(x) < 0 \ \forall \ x \in \left(0, \frac{\pi}{2}\right)$$

22.
$$f(x) = x^{2\alpha+1} \ln x$$
 $x > 0$

$$x = 0$$

f(x) is not continuous at $\alpha = -\frac{1}{2}, -1$

23.
$$f'(x) = \frac{\cos x}{x}$$

Clearly,
$$f'(x) > 0 \Rightarrow x \in \left(0, \frac{\pi}{2}\right) \cup \left((4n-1)\frac{\pi}{2}, (4n+1)\frac{\pi}{2}\right) \forall n \in \mathbb{N}$$

and
$$f'(x) < 0 \Rightarrow x \in \left((4n+1)\frac{\pi}{2}, (4n+3)\frac{\pi}{2} \right) \forall n \in \mathbb{N}$$

$$f(x) \text{ has a local minima at } x = (4n-1)\frac{\pi}{2} \ \forall \ n \in \mathbb{N}$$

and
$$f(x)$$
 has a local maxima at $x = \frac{\pi}{2}$ and $(4n + 1)\frac{\pi}{2} \forall n \in \mathbb{N}$

Also,
$$f''(x) = \frac{x(-\sin x) - \cos x}{x^2} = 0 \implies x \tan x + 1 = 0$$

 \therefore All the points of inflection of f(x) lie on the curve $x \tan x + 1 = 0$

Also,
$$f'(x) = 0 \implies x = (2n+1)\frac{\pi}{2} \ \forall \ n \in \mathbb{N}$$

Number of values of x in $(0, 10\pi)$ in which f'(x) = 0 are 20.

24. $|f(x)| \le 1$

Applying L.M.V.T. in $x \in (0, 1)$

$$\Rightarrow |f'(x)| = |f(1) - f(0)|$$

$$|f(1) - f(0)| \le 2$$

$$\Rightarrow$$
 $|f'(x)| \le 2$ for at least one x in $(0,1)$

Similarly $|f'(x)| \le 2$ for at least one x is (-1,0)

$$F(x) = (f(x))^2 + (f'(x))^2$$

For atleast one x in (0, 1) & (-1, 0)

$$|f'(x)| \le 2 \& |f(x)| \le 1$$

$$\Rightarrow$$
 $(f'(x))^2 \le 4 \& (f(x))^2 \le 1$

$$\Rightarrow (f'(x))^2 + (f(x))^2 \le 5$$

$$\Rightarrow$$
 $F(x) \le 5$, for at least one x in $(-1,0) & (0,1)$

90

25.
$$f\left(\frac{\pi}{2}\right) > f\left(\frac{\pi^+}{2}\right)$$
 and $f\left(\frac{\pi}{2}\right) > f\left(\frac{\pi^-}{2}\right)$

Also, absolute maximum occurs at x = -1

26. Symmetric about y = x

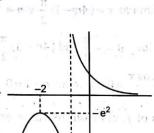
$$\frac{dy}{dx} = 1$$

$$2x=1 \Rightarrow x=\frac{1}{2}$$

Point =
$$\left(\frac{1}{2}, \frac{5}{4}\right)$$
 $\left(\frac{1}{2}, \frac{5}{4}\right)$ $\left(\frac{1}{2}, \frac{5}{4}\right)$ $\left(\frac{1}{2}, \frac{5}{4}\right)$ $\left(\frac{1}{2}, \frac{5}{4}\right)$

27.
$$f'(x) > 0 \implies \frac{-(1+x)e^{-x} - e^{-x}}{(1+x)^2} > 0$$

for x < -2 increasing.



28. Point (1, 2) lies on
$$y = mx + 5$$
 $\Rightarrow m = -3$...(1)

Point (1, 2) lies on
$$x^3y^3 = ax^3 + by^3 \implies 8b + a = 8$$

$$3x^2y^3 + x^3 \cdot 3y^2y^1 = 3ax^2 + 3by^2y^1 \Rightarrow a - 12b = -4$$

 $a=\frac{16}{5}, b=\frac{3}{5}$

29.
$$\frac{f(x)-1}{f(x)+1} = \frac{x^4+x^2+1}{(x^2+x+1)^2} = \frac{x^2-x+1}{x^2+x+1}$$

$$\Rightarrow f(x) = \frac{x^2 + 1}{x}$$

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

1.
$$f(x) = \frac{x+1}{x-1}$$

 $g(x) = \frac{x(x+1)}{x-1} = x+2+\frac{2}{x-1}$
 $g'(x) = 1 - \frac{2}{(x-1)^2} = 0$

$$x = 1 + \sqrt{2}, 1 - \sqrt{2}$$

$$g''(x) = \frac{4}{(x-1)^3}$$

$$g''(1+\sqrt{2})>0$$

Minimum value of g(x) is $3 + 2\sqrt{2}$.

2.
$$g'(x) = \frac{1}{2} \Rightarrow 1 - \frac{2}{(x-1)^2} = \frac{1}{2} \Rightarrow x = 3, -1$$

Paragraph for Question Nos. 3 to 5

3.
$$g(1) = \int_{0}^{1} f(t) dt = \int_{0}^{1} (1-t) dt = t - \frac{t^2}{2} \Big|_{0}^{1} = \frac{1}{2}$$

4. For
$$x \in (2,3]$$

For
$$x \in (2,3]$$

$$g(x) = \int_{0}^{1} f(t) dt + \int_{1}^{2} f(t) dt + \int_{2}^{x} f(t) dt$$

$$g(x) = \frac{1}{2} + \frac{(x-2)^3}{3}$$

at
$$x = \frac{5}{2}$$
, $g\left(\frac{5}{2}\right) = \frac{13}{24}$

$$g'(x) = f(x)$$

$$g'\left(\frac{5}{2}\right) = \frac{1}{4}$$
 At as \$1.00M notice up for against 9

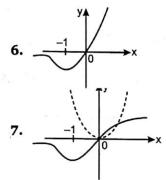
$$y - \frac{13}{24} = \frac{1}{4} \left(x - \frac{5}{2} \right)$$

$$12y = 3x - 1$$

92

5. Slope of tangent at $P = \frac{1}{4}$ Slope of tangent at $R = \frac{2}{3}$ $\tan \theta = \frac{5}{14}$

Paragraph for Question Nos. 6 to 8



Paragraph for Question Nos. 9 to 11

- **9.** By putting x = 1, 2, -1, 0 we get a, b, c, d clearly other roots product is 1.
- **10.** P(x) + k = 0 has 4 distinct real roots.

$$P(x) = -k$$
, where $-k \in (1, 2) \implies k \in (-2, -1)$

: pull the graph more than 1 and less than 2, now the graph intersect the x-axis in (-2, -1), (-1, 0), (0, 1), (2, 3)

$$\therefore$$
 -2 + (-1) + 0 + 2 = -1

11. P(x) = 0 has two roots.

P'(x) = 0 has three root

P(x) = 0 has at least 5 roots.

 $(P'(x))^2 + P(x)P''(x) = 0 \Rightarrow (P'(x)P(x))' = 0$ has at least four roots.

Paragraph for Question Nos. 12 to 14

Sol. The equation of chord AB will be $y - f(x_1) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}(x - x_1)$

This line passes through $(0, 2x_1x_2)$

$$2x_1x_2 - f(x_1) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}(-x_1)$$

03

www.jeebooks.in

$$\Rightarrow 2x_1x_2 = \frac{(x_2 - x_1)f(x_1) - x_1f(x_2) + x_1f(x_1)}{x_2 - x_1}$$

$$\Rightarrow 2x_1x_2(x_2 - x_1) = x_2f(x_1) - x_1f(x_2)$$

$$\Rightarrow \frac{f(x_1)}{x_1} - \frac{f(x_2)}{x_2} = 2(x_2 - x_1) \Rightarrow \frac{f(x_1)}{x_1} + 2x_1 = \frac{f(x_2)}{x_2} + 2x_2 = k$$

$$\therefore \frac{f(x)}{x} + 2x = k$$

$$f(x) = kx - 2x^2$$

Given that f(1) = -1

$$\therefore -1 = k - 2 \implies k = 1$$

$$f(x) = x - 2x^2$$

12.
$$\therefore \int_0^{1/2} f(x) dx = \left[\frac{x^2}{2} - \frac{2x^3}{3} \right]_0^{1/2} = \frac{1}{8} - \frac{2}{3} \cdot \frac{1}{8} = \frac{1}{8} - \frac{1}{12} = \frac{1}{24}$$

13.
$$f'(x) = 1 - 4x \ge 0 \implies x \le \frac{1}{4}$$

14.
$$F(x) = f(x) + x = 2x - 2x^2$$

Clearly, $F(0) = F(1) = 0$

.. Rolle's theorem is applicable in [0, 1].

Paragraph for Question Nos. 15 to 16

15.
$$f(x) = 1 + x \int_{0}^{1} e^{y} f(y) dy + e^{x} \int_{0}^{1} y f(y) dy$$
Let
$$A = \int_{0}^{1} e^{y} f(y) dy, \quad B = \int_{0}^{1} y f(y) dy$$

$$\Rightarrow f(x) = 1 + Ax + Be^{x} \Rightarrow A = \int_{0}^{1} e^{x} (1 + Ay + Be^{y}) dy$$

$$B = -\frac{2}{e+1}, A = -\frac{3}{2}$$

$$f'(x) + 3 > 0$$

$$\Rightarrow -\frac{3}{2} - \frac{2e^{x}}{(e+1)} + 3 > 0 \Rightarrow e^{x} < \frac{3(e+1)}{4} \Rightarrow \left[\frac{4}{3}e^{x}\right] = [e+1] = 3$$
16.
$$Ax_{1} + Be^{x_{1}} = -\frac{3x_{1}}{2} - 2 \Rightarrow Be^{x_{1}} = -2$$

$$f'(x_{1}) = A + Be^{x_{1}} = m_{1}$$

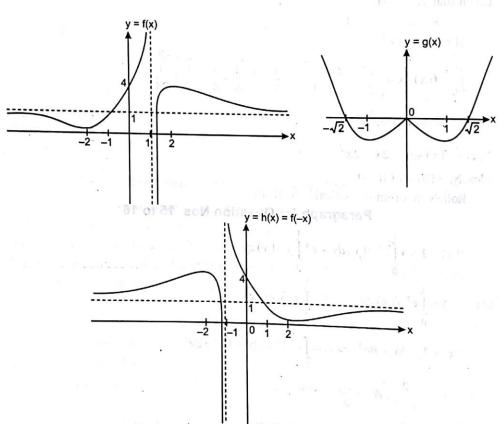
$$m_1 = -\frac{3}{2} - 2 = -\frac{7}{2}$$

$$m_2 = -\frac{3}{2}$$

$$\tan \theta = \frac{8}{25}$$

Exercise-4: Matching Type Problems

3.



4. (A)
$$y = \frac{x^3}{(x-\alpha)(x-\beta)(x-\gamma)}$$

$$y = \frac{8}{(2-\alpha)(2-\beta)(2-\gamma)}$$

$$x^3 - 3x^2 + 2x + 4 = (x-\alpha)(x-\beta)(x-\gamma)$$

Application of Derivatives

Put x = 2

$$8-12+4+4=(2-\alpha)(2-\beta)(2-\gamma)=4$$

$$y|_{\text{at }x=2} = \frac{8}{4} = 2$$

(B)
$$x^3 + ax + 1 = 0$$
,

$$x^4 + ax + 1 = 0$$

...(2)

$$x^4 + ax^2 + x = 0$$

$$ax^2-ax+x-1=0$$

$$ax(x-1)+(x-1)=0$$

$$(x-1)(ax+1)=0$$

$$x=1$$
 or $x=-\frac{1}{a}$

put
$$x = 1$$
 in (1) we get,

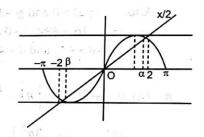
$$1+a+1=0 \Rightarrow a=-2$$
 (2)

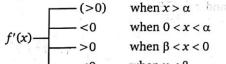
$$|a|=2$$

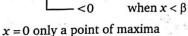
(C)
$$f(x) = x^2 + 4\cos x + 5$$

$$f'(x) = 2x - 4\sin x = 2(x - 2\sin x) = 0$$

$$\sin x = \frac{x}{2}$$







So, number of local maxima is 1.

(D) Let
$$|x| = t \in [0, 2]$$

$$f(x) = 2t^3 + 3t^2 - 12t + 1 = g(t)$$

$$g'(t) = 6t^2 + 6t - 12t = 6(t^2 + t - 2) = 6(t + 2)(t - 1)$$

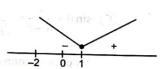
$$g(1)$$
 is min. of $f(x)$ i.e., $f_{min} = 2 + 3 - 12 + 1 = -6$

$$g(0) = 1$$
, $g(2) = 16 + 12 - 24 + 1 = 5$

max. of f(x) is 5 > 4, 3, 2, 0

6.
$$f' = \frac{1}{8x} - a + 2x > 0$$
 since $x > 0$

$$1 - 8ax + 16x^2 > 0$$



See
$$D=0$$
 $D<0$
 $D>0$
7. Let $g(x) = ax^3 + bx^2 + cx + d$
 $f(x) = \sqrt{g(x)}$
 $f(x)$ has local maxima and local maxima at $x = -2$ and $x = 2$.

 $\Rightarrow g(x)$ has same local minima and maxima and $x = -2$ and $x = 2$.

 $\Rightarrow a<0$; $a=-2$
 $f'(x) = \frac{3ax^2 + 2bx + c}{2\sqrt{ax^3 + bx^2 + cx + d}} = 0$
 $f'(-2) = 0$ and $f'(2) = 0$
 $\Rightarrow b=0, c=24$
Also, $g(2) > 0$ and $g(-2) > 0$
 $\Rightarrow -16 + 48 + d > 0$ and $16 - 48 + d > 0$
 $d>-32$ and $d>32$
 $\Rightarrow d>32$

8. (A) $V = \pi r^2 h = \pi h \cdot \left(R^2 - \frac{h^2}{4}\right)$
 $\frac{dV}{dh} = \pi \left(R^2 - \frac{3h^2}{4}\right) = 0 \Rightarrow h = \frac{2R}{\sqrt{3}}$ and $r = \sqrt{\frac{2}{3}}R$

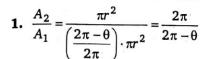
(B) $V = \frac{\pi^2 h}{3} = \frac{\pi h}{3} (R^2 - (h - R)^2)$
 $\frac{dV}{dh} = \frac{\pi}{3} (4hR - 3h^2) = 0 \Rightarrow h = \frac{4R}{3}$ and $r = \frac{2\sqrt{2}R}{3}$

(C) $\sin \theta = \frac{r}{h-r} = \frac{R}{\sqrt{R^2 + h^2}} \Rightarrow R^2 = \frac{h^2 r^2}{h^2 - 2hr}$

Volume of cone $= \frac{\pi}{3} R^2 h = \frac{\pi}{3} \left(\frac{h^2 r^2}{h - 2r} \right)$
 $\frac{dV}{dh} = \frac{\pi}{3} r^2 \left(\frac{(h - 2r)2h - h^2}{(h - 2r)^2} \right) = 0 \Rightarrow h = 4r$

(D)
$$\frac{\left(\frac{2x}{3} + \frac{2x}{3} + \frac{2x}{3}\right) + \left(\frac{3y}{4} + \frac{3y}{4} + \frac{3y}{4} + \frac{3y}{4}\right)}{7} \ge \left(\frac{8x^3}{27} \cdot \frac{81y^4}{256}\right)^{1/7} \implies x^3y^4 \le \frac{32}{3}$$

Exercise-5: Subjective Type Problems



$$V = \frac{\pi}{3} \left(\frac{\theta}{2\pi}\right)^2 \sqrt{1^2 - \left(\frac{\theta}{2\pi}\right)^2}$$

$$\frac{dV}{d\theta} = 0 \implies \theta = \sqrt{\frac{8}{3}} \pi$$

$$\frac{A_2}{A_1} = \frac{\sqrt{3}}{\sqrt{3} - \sqrt{2}} = 3 + \sqrt{6}$$

2. $f(x) = x^2 \ln x$

$$\Rightarrow f'(x) = x(1 + 2\ln x)$$

and f'(x) > 0 for $\in [1, e]$

f(x) is continuously increasing on [1, e] with the least value zero at x = 1 and the greatest value e^2 at x = e.

3.
$$f(x) = px e^{-x} - \frac{x^2}{2} + x$$

$$f'(x) = (1-x)[pe^{-x} + 1] \le 0$$

$$\Rightarrow p \le -1$$

$$\Rightarrow p \le -1$$
4. $f'(x) = \begin{cases} ax e^{ax} + e^{ax}; & x \le 0 \\ 1 + 2ax - 3x^2; & x > 0 \end{cases}$

Clearly, f'(x) is continuous at x = 0

$$\Rightarrow f''(x) = \begin{cases} a^2 x e^{ax} + 2ae^{ax}; & x \le 0 \\ 2a - 6x; & x > 0 \end{cases}$$
 $f'(x)$ increasing if $(ax + 2) ae^{ax} \ge 0$ and $2a - 6x \ge 0$

Try - 20 22 - 12 - 12 - 12 - 12

5.
$$f(x) = x^2 - 2bx + 1$$

Case I: b>1

$$\Rightarrow f(0) - f(1) = 4$$

$$\Rightarrow 1-(2-2b)=4$$

$$\Rightarrow b = \frac{5}{2}$$

Case II: $0 < b < \frac{1}{2}$

$$\Rightarrow f(1) - f(b) = 4$$

$$b = 3, -1$$
 (Not possible)

Case III:
$$\frac{1}{2} < b < 1$$

$$\Rightarrow f(0) - f(b) = 4$$

$$b = \pm 2 \qquad \text{(Not possible)}$$
Case IV: $b < 0$

Case IV:
$$b < 0$$

$$\Rightarrow f(1) - f(0) = 4$$

$$\Rightarrow b = -\frac{3}{2}$$

6.
$$x^2 + 9y^2 = 36$$
 $x^2 + y^2 = 12$
 $12 - y^2 + 9y^2 = 36$
 $8y^2 = 24 \implies y^2 = 3 \implies y = \sqrt{3}, -\sqrt{3}$
when $y = \pm \sqrt{3}, x^2 = 12 - 3 = 9$

 \therefore point of intersections are $(\pm 3, \pm \sqrt{3})$

 $x = \pm 3$

Let one of point of intersect is $(3, \sqrt{3})$

Now,
$$\frac{2x}{36} + \frac{2y}{4}y' = 0 \Rightarrow y' = \left(-\frac{2x}{36}\right) \times \left(\frac{4}{2y}\right)$$
$$(y')_{(3,\sqrt{3})} = -\frac{1}{3\sqrt{3}} = (m_1)$$
$$2x + 2yy' = 0 \Rightarrow y' = -\frac{x}{y} \Rightarrow (y')_{(3,\sqrt{3})} = -\frac{3}{\sqrt{3}} = -\sqrt{3} = m_2$$
$$\tan \theta = \left|\frac{m_1 - m_2}{1 + m_2 m_1}\right| = \left|\frac{-\frac{1}{3\sqrt{3}} + \sqrt{3}}{1 + \frac{1}{3}}\right| = \left|\frac{8}{4\sqrt{3}}\right| = \left|\frac{2}{\sqrt{3}}\right|$$

(aldison or

$$\tan \theta = \frac{2}{\sqrt{3}} \implies \theta = \tan^{-1} \left(\frac{2}{\sqrt{3}} \right)$$

7.
$$f'(x) = 2e^{2x} - (\lambda + 1)e^{x} + 2 \ge 0 \ \forall \ x \in R$$

 $i.e., 2e^{2x} + 2 - (\lambda + 1)e^{x}$
 $\lambda + 1 \le 2(e^{x} + e^{-x})$
 $\frac{\lambda + 1}{2} \le (e^{x} + e^{-x}) \ \forall \ x \in R$
 $\Rightarrow \frac{\lambda + 1}{2} \le (e^{x} + e^{-x})_{\min} \ \forall \ x \in R$

Application of Derivatives

99

So,
$$\frac{\lambda+1}{2} \le 2$$

 $\lambda+1 \le 4$
 $\lambda \le 3$
 $\lambda \in (-\infty,3]$

9.
$$f(x) = x^2$$
, $g(x) = -\frac{8}{x}$
 $\Rightarrow q = p^2$ $\Rightarrow s = -\frac{8}{r}$

Also,
$$\frac{s-q}{r-p} = 2p$$
 & $2p = \frac{8}{r^2}$ $pr^2 = 4$ $pr^2 = 2p$...(1)

$$\Rightarrow \frac{-\frac{8}{r}-p^2}{r-p} = 2p \Rightarrow -\frac{8}{r}-p^2 = 2pr-2p^2$$

$$p^2 = \frac{8}{r} + 2p$$
$$p^2 r = 16$$

$$\Rightarrow pr = 4$$

$$\Rightarrow r = 1, p = 4$$

10.
$$f(x) = \begin{bmatrix} |x+2|, & x \ge 0 \\ |x-2|, & x < 0 \end{bmatrix}$$

Minimum value of f(x) is 2.

11.
$$f(x) = \int_{0}^{x} [(a-1)(t^2+t+1)^2-(a+1)(t^4+t^2+1)]dt$$

$$2\int_{0}^{x} (t^{2} + t + 1)(at - t^{2} - 1) dt$$
$$f'(x) = 2(x^{2} + x + 1)(ax - x^{2} - 1) = 0$$

12.
$$f(x) = x^{2013} + e^{2014x}$$

 $D < 0 \Rightarrow a^2 - 4 < 0$

$$f'(x) = 2013 x^{2012} + 2014 e^{2014x} > 0$$

 \Rightarrow f(x) is increasing function.

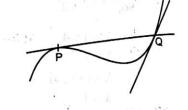
Solution of Advanced Problems in Mathematics for JEE

14.
$$P = (x_1, x_1^3 - ax_1)$$

 $Q = (x_2, x_2^3 - ax_2)$
 $y = x^3 - ax$
 $\frac{dy}{dx} = 3x^2 - a$

$$\frac{dy}{dx} = 3x^2 - a$$

Slope at P = slope of PQ



$$(3x_1^2 - a) = \left(\frac{x_2^3 - ax_2 - x_1^3 + ax_1}{x_2 - x_1}\right) \quad (\because x_1 \neq x_2)$$

$$(x_2 - x_1)(x_2 + 2x_1) = 0$$

$$\Rightarrow x_2 = -2x_1$$
Slope at $P \times \text{Slope at } Q = -1$

$$(3x_1^2 - a)(3x_2^2 - a) = -1$$
Put (1) in (2)

$$x_2 =$$

Put (1) in (2),

$$36x_{1}^{4} - 15ax_{1}^{2} + (a^{2} + 1) = 0$$

$$D \ge 0$$

$$9a^{2} \ge 16 \implies a \ge \frac{4}{3}$$

$$(\because x_{1} \in R)$$

15.
$$I(t) = \int_{\alpha}^{\beta} (x^2 + 2x - t^2) dx = \frac{x^3}{3} + x^2 - t^2 x \Big|_{\alpha}^{\beta}$$

$$I(t) = \frac{\beta^3 - \alpha^3}{3} + (\beta^2 - \alpha^2) - t^2 (\beta - \alpha)$$

$$I'(t) = -2t(\beta - \alpha) = 0$$

$$I(t) \leq I(0)$$

$$I(0) = \int_{-2}^{0} (x^2 + 2x) dx = -\frac{4}{3} \Rightarrow \frac{p}{q} = |I(0)| = \frac{4}{3}$$

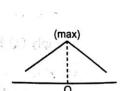
16.
$$\frac{dy}{dt} = 1 - \frac{3y}{100 - 2t} \text{ when } t = 0, y = 0$$

$$\frac{dy}{dt} + \left(\frac{3}{100 - 2t}\right) y = 1$$

$$y(100 - 2t)^{-3/2} = +(100 - 2t)^{-1/2} + c$$
as when $t = 0, y = 0$

$$c = -\frac{1}{10}$$

$$y = (100 - 2t) - \frac{1}{10}(100 - 2t)^{3/2}$$



Application of Derivatives

101

$$\frac{dy}{dt} = -2 - \frac{1}{10} \left(\frac{3}{2} \right) (100 - 2t)^{1/2} (-2) = 0$$

$$t = \frac{250}{9} = 27 + \frac{7}{9}$$

17. Let
$$f'(x) = K$$

 $\Rightarrow f(x) = Kx + c$
 $\Rightarrow f(9) - f(-3) = 12 K$

Maximum value of f(9) - f(-3) = 96

19. Equation of normal at
$$P\left(\frac{3}{4}y_1^3, y_1\right)$$
 is $y - y_1 = \frac{-9y_1^2}{4}\left(x - \frac{3}{4}y_1^3\right)$

If it passes from (0, 1) then $27y_1^5 + 16y_1 - 16 = 0$ has only one real root.

20.
$$e^{-x} \left(\frac{x^2}{2} + x + 1 \right) = a$$

Let $f(x) = e^{-x} \left(\frac{x^2}{2} + x + 1 \right)$
 $f'(x) = e^{-x} \left(-\frac{x^2}{2} \right) < 0$

21.
$$f'(x) = a - 2\sin 2x + \cos x - \sin x$$

Let $g(x) = -2\sin 2x + \cos x - \sin x$
 $= -2\{(\cos x - \sin x)^2 - 1\} + \cos x - \sin x$

where
$$\cos x - \sin x = t$$

$$-2t^2 + t + 2 \forall t \in [-\sqrt{2}, \sqrt{2}]$$

$$-2 - \sqrt{2} \le g(x) \le \frac{17}{8} \implies a \ge \frac{17}{8}$$

22. Let
$$x = 6\cos^{3}\theta, \quad y = 6\sin^{3}\theta$$
$$\frac{dy}{dx} = \frac{6(3\sin^{2}\theta\cos\theta)}{-6(3\cos^{2}\theta\sin\theta)} = -\tan\theta$$

Equ. of tangent

$$y - 6\sin^3\theta = -\tan\theta(x - 6\cos^3\theta) \Rightarrow p_1 = 6\sin\theta\cos\theta$$

Equ. of normal

$$y - 6\sin^{3}\theta = \cot\theta(x - 6\cos^{3}\theta) \implies p_{2} = 6(\cos^{2}\theta - \sin^{2}\theta)$$

$$\sqrt{4p_{1}^{2} + p_{2}^{2}} = 6\sqrt{4\sin^{2}\theta\cos^{2}\theta + \cos^{4}\theta + \sin^{4}\theta - 2\sin^{2}\theta\cos^{2}\theta} = 6$$

INDEFINITE AND DEFINITE INTEGRATION

Exercise-1 : Single Choice Problems

1.
$$\int \left[a^x \ln x + \underbrace{a^x \ln a}_{ii} \cdot \underbrace{x(\ln x - 1)}_{i} \right] dx$$

$$= \int a^x \cdot \ln x \, dx + \left[x(\ln x - 1) \, a^x - \int \left[x \cdot \frac{1}{x} + (\ln x - 1) \right] a^x \right] dx$$

$$= \int a^x \cdot \ln x \, dx + \left[x(\ln x/e) \right] a^x - \int (\ln x) \, a^x \, dx$$

2.
$$\lim_{n\to\infty} \frac{1}{n} \sum_{r=1}^{n} \frac{1}{\sqrt{1+\frac{r}{n}}} = \int_{0}^{1} \frac{dx}{\sqrt{x+1}} = 2(\sqrt{2}-1)$$

3.
$$\int \frac{\sin x}{\sin(x-\alpha)} dx$$
Let $x - \alpha = t \Rightarrow dx = dt$

$$\int \frac{\sin(t+\alpha)}{\sin t} dt = t \cos \alpha + \sin \alpha \log \sin t + C = x \cos \alpha + \sin \alpha \log \sin(x-\alpha) + C$$

4.
$$\int_{0}^{2} \frac{\log(x^{2} + 2)}{(x + 2)^{2}} dx = \left(\frac{-\log(x^{2} + 2)}{x + 2}\right)_{0}^{2} + \int_{0}^{2} \frac{2x dx}{(x + 2)(x^{2} + 2)}$$
$$= \frac{\sqrt{2}}{3} \tan^{-1} \sqrt{2} - \frac{5}{12} \log 2 + \frac{1}{12} \log 3$$

5. For
$$0 < x < 1$$

 $1 + x^9 < 1 + x^8 < 1 + x^4 < 1 + x^3$

6. Let
$$g(x) = \int_{0}^{x} \sqrt{1 - (f(s))^{2}} ds$$

Indefinite and Definite Integration

103

$$\lim_{t \to \infty} \left(\frac{g(t) - g(x)}{f(t) - f(x)} \right) = f(x) \qquad \Rightarrow g'(x) = f(x) f'(x) = \sqrt{1 - (f(x))^2}$$

$$\int \frac{y \, dy}{\sqrt{1 - y^2}} = \int dx \qquad \Rightarrow \sqrt{1 - y^2} = 1 - x \qquad \left(\because f\left(\frac{1}{2}\right) = \frac{\sqrt{3}}{2} \right)$$
7.
$$\lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \sqrt{f\left(\frac{r}{n}\right)} = \int_{0}^{1} \sqrt{f(x)} \, dx = \frac{2}{\sqrt{3}} \int_{0}^{1} \sqrt{1 - \cos^6 x - \sin^6 x} \, dx$$

$$= \int_{0}^{1} \sin 2x \, dx = \frac{1 - \cos 2}{2}$$
8.
$$\int_{0}^{1} \frac{(x^6 - x^3)}{(2x^3 + 1)^3} \, dx = \frac{1}{2} \int_{0}^{1} \frac{2\left(1 - \frac{1}{x^3}\right)}{\left(2x + \frac{1}{x^2}\right)^3} \, dx = -\frac{1}{36}$$

$$9. 2 \int_{0}^{1/\sqrt{2}} \frac{\sin^{-1} x}{x} \, dx - \int_{0}^{1} \frac{\tan^{-1} x}{x} \, dx$$

$$2 \int_{0}^{\pi/4} \frac{\theta \cos \theta}{\sin \theta} \, d\theta - \int_{0}^{\pi/4} \frac{\theta \sec^2 \theta}{\tan \theta} \, d\theta = -\frac{\pi}{4} \ln 2 - 2 \int_{0}^{\pi/4} \ln \sin \theta \, d\theta + \int_{0}^{\pi/4} \ln \tan \theta \, d\theta$$

$$= -\int_{0}^{\pi/4} \ln \sin 2\theta \, d\theta = \frac{\pi}{4} \ln 2$$
10.
$$f(x) = x^2 + \int_{0}^{x} e^{-t} f(x - t) \, dt = x^2 - e^{-x} \int_{x}^{x} e^{t} f(u) \, du$$

$$f'(x) = 2x + e^{-x} \int_{x}^{x} e^{t} f(u) \, du + f(x) \Rightarrow f'(x) = x^2 + 2x$$

$$\Rightarrow f(x) = \frac{x^3}{3} + x^2$$
11.
$$f'(x) = f(x) + k_1 \qquad \left(k_1 = \int_{0}^{1} f(x) \, dx\right)$$

$$\Rightarrow y = ke^x - k_1$$
If $f(0) = 1 \Rightarrow k - k_1 = 1$

$$k_1 = \int_{0}^{1} (ke^x - k_1) \, dx \Rightarrow 2k_1 = k(e - 1) \Rightarrow k = \frac{2}{3} - \frac{\sin k_1}{2} = \frac{e - T}{3}$$

12.
$$I_1 = \int_{\sin^2 x}^{1+\cos^2 x} tf(t(2-t)) dt = 2 \int_{\sin^2 x}^{1+\cos^2 x} f(t(2-t)) dt - \int_{\sin^2 x}^{1+\cos^2 x} tf(t(2-t)) dt$$

$$I_1 = 2I_2 - I_1 \Rightarrow I_1 = I_2$$

$$I_1 = 2I_2 - I_1 \implies I_1 = I_2$$
13.
$$\int \frac{5\sin x \, dx}{\sin x - 2\cos x} = \int dx + 2\int \frac{\cos x + 2\sin x}{\sin x - 2\cos x} dx = x + 2\ln|\sin x - 2\cos x| + C$$

14.
$$\int \frac{(2+\sqrt{x}) dx}{(x+1+\sqrt{x})^2} = \int \frac{\frac{2}{x^2} + \frac{1}{x^{3/2}}}{\left(\frac{1}{x} + \frac{1}{\sqrt{x}} + 1\right)^2} dx$$

Let
$$\frac{1}{x} + \frac{1}{\sqrt{x}} + 1 = t \implies \left(-\frac{1}{x^2} - \frac{1}{2x^{3/2}} \right) dx = dt$$

15.
$$\int \frac{\left(\sqrt[3]{x+\sqrt{2-x^2}}\right)\left(\sqrt[6]{1-x\sqrt{2-x^2}}\right)dx}{\sqrt[3]{1-x^2}} = \int \frac{\sqrt[3]{x+\sqrt{(2-x^2)}}\sqrt[3]{\left(\frac{\sqrt{2-x^2}-x}{2}\right)}}{\sqrt[3]{1-x^2}}dx$$
$$= 2^{1/6} \int dx = 2^{1/6}x + C$$
16.
$$\int \frac{dx}{\sqrt{1-\tan^2 x}}$$

16.
$$\int \frac{dx}{\sqrt{1-\tan^2 x}}$$

$$\int \frac{\cos x \, dx}{\sqrt{1-2\sin^2 x}} = \frac{1}{\sqrt{2}} \sin^{-1}(\sqrt{2}\sin x) + C$$

17.
$$I = \int \frac{dx}{x^{5/6} \cdot (x+1)^{7/6}}$$

$$\frac{x}{x+1} = t \qquad \frac{dx}{(x+1)^2} = dt$$

$$I = \int \frac{(x+1)^2 dt}{\left[t(x+1)\right]^{5/6} (x+1)^{7/6}} = \int t^{-5/6} dt = 6t^{1/6} + C$$

18.
$$I_n = \int \sin^n x \, dx = \int \sin^{n-2} x (1 - \cos^2 x) \, dx$$

$$I_n = I_{n-2} - \int \underbrace{\sin^{n-2} x \cdot \cos x}_{\Pi} \cdot \underbrace{\cos x}_{1} dx$$

$$I_n = I_{n-2} - \left(\frac{\cos x \cdot \sin^{n-1} x}{n-1} - \int -\sin x \cdot \frac{\sin^{n-1} x}{n-1} dx \right)$$

$$I_n = I_{n-2} - \frac{\cos x \cdot \sin^{n-1} x}{n-1} - \frac{1}{n-1} I_n$$

$$nI_n - (n-1)I_{n-2} = -\cos x \cdot \sin^{n-1} x$$

Indefinite and Definite Integration

19.
$$\int x^{2} \frac{1}{(a+bx)^{2}} dx \qquad \text{Let } a+bx=t \text{ then } dx = \frac{dt}{b}$$

$$\therefore \int x^{2} \frac{1}{(a+bx)^{2}} dx = \int \left(\frac{t-a}{b}\right)^{2} \cdot \frac{1}{t^{2}} \cdot \frac{dt}{b} = \frac{1}{b^{3}} \int \left(\frac{t^{2}-2at+a^{2}}{t^{2}}\right) dt$$

$$= \frac{1}{b^{3}} \int \left(1 - \frac{2a}{t} + \frac{a^{2}}{t^{2}}\right) dt = \frac{1}{b^{3}} \left[t - 2a\ln|t| - \frac{a^{2}}{t}\right] + C$$

$$= \frac{1}{b^{3}} \left[a + bx - 2a\ln|a + bx| - \frac{a^{2}}{a + bx}\right] + C$$
20.
$$\int \frac{8x^{43} + 13x^{38}}{(x^{13} + x^{5} + 1)^{4}} dx$$

$$\int \frac{8x^{-9} + 13x^{-14}}{(1+x^{-8} + x^{-13})^{4}} dx$$

$$\text{Let } 1 + x^{-8} + x^{-13} = t$$

$$(-8x^{-9} - 13x^{-14}) dx = dt$$

$$\therefore \int -\frac{dt}{t^{4}} = +\frac{1}{3t^{3}} + C = \frac{1}{3(1+x^{-8} + x^{-13})^{3}} + C = \frac{x^{39}}{3(x^{13} + x^{5} + 1)^{13}} + C$$
21.
$$\int \left(\frac{(\cos 6x + \cos 4x) + 5(\cos 4x + \cos 2x) + 10(\cos 2x + 1)}{10\cos^{2} x + 5\cos x \cos 3x + \cos x \cos 5x}\right) dx$$

$$= \int \frac{2\cos 5x \cos x + 5(2\cos 3x \cos x) + 10(2\cos^{2} x)}{10\cos^{2} x + 5\cos x \cos 3x + \cos x \cos 5x}$$

$$= \int 2 dx = 2x + C$$

$$f(x) = 2x \Rightarrow f(10) = 20$$
22.
$$\int (1 + x - x^{-1}) e^{x + x^{-1}} dx = \int e^{x + x^{-1}} \cdot 1 dx + \int (x + x^{-1}) e^{x + x^{-1}} dx$$

$$= e^{x + x^{-1}} + C$$
23.
$$\int e^{x} \left[\frac{2\tan x}{1 + \tan x} + \frac{1}{\left(\frac{1 - \cos(\pi/2 + 2x)}{2}\right)}\right] dx = \int e^{x} \left[\frac{2\tan x}{1 + \tan x} + \frac{2}{\left(1 + \sin 2x\right)}\right] dx$$

 $=2\int e^{x}\left|\frac{\sin x}{\sin x+\cos x}+\frac{1}{(\sin x+\cos x)^{2}}\right|dt$

www.jeebooks.in

Let
$$f(x) = \frac{\sin x}{\sin x + \cos x}$$
, $f'(x) = \frac{1}{(\sin x + \cos x)^2}$
 $= 2 \cdot e^x \left(\frac{\sin x}{\sin x + \cos x}\right) + C$
 $g\left(\frac{5\pi}{4}\right) = 1$
24. $\frac{d}{dx}(x \sin x + \cos x) = x \cos x$ $f'(x) = x \cos x$
Let $f(x) = x \sin x + \cos x$ $f''(x) = -x \sin x + \cos x$
 $\int e^{f(x)} \left(xf'(x) + \frac{f''(x)}{(f'(x)^2)}\right) dx = \int x e^{f(x)} f'(x) dx + \int e^{f(x)} \cdot \frac{f''(x)}{(f'(x)^2)} dx$
 $= x e^{f(x)} - \int e^{f(x)} dx + e^{f(x)} - \int e^{f(x)} \cdot f'(x) \left(\frac{-1}{f'(x)}\right) dx$
 $= x e^{f(x)} - \frac{e^{f(x)}}{f'(x)} + C = e^{f(x)} \left(x - \frac{1}{f'(x)}\right) + C$
 $= e^{x \sin x + \cos x} \left(x - \frac{1}{x \cos x}\right) + C$
25. $\int_{0}^{1} \left(\sqrt{x} + \frac{1}{\sqrt{x} + \sqrt{1 + x}}\right) dx$
 $\int_{0}^{1} (\sqrt{x} + (\sqrt{1 + x} - \sqrt{x}) dx = \int_{0}^{1} (\sqrt{1 + x} dx = \frac{2}{3}(1 + x)^{3/2}]_{0}^{1} = \frac{2}{3}(2^{3/2} - 1)$
26. $\int x^2 (2 \ln x + 1) dx$
 $x^2 = t$
 $x^2 \ln x = \ln t$
 $\left(x^2 \frac{1}{x} + (\ln x) 2x\right) dx = \frac{1}{t} dt$
 $\therefore \int t \cdot \frac{dt}{t} = \int dt = t + C = x^2 + C = (x^2)^2 + C$
27. $= \int \sec^{2010} x (\cos^2 x) dx - \int 2010 \sec^{2010} x dx$
 $= \int \sec^{2010} x (-\cot x) - \int 2010 \sec^{2010} x dx - \cot x - \int 2010 \sec^{2010} x dx$
 $= -\frac{\cot x}{(\cos x)^{2010}} + 2010 \int \sec^{2010} x dx - 2010 \int \sec^{2010} x dx + C = \frac{-\cot x}{(\cos x)^{2010}} + C$
 $\therefore \frac{f(x)}{g(x)} = \frac{1}{\sin x} = (x)$ no solution.

 $37. + \frac{7 \cdot 37 \cdot 7}{11 \cdot 37 \cdot 37} \ln \left(\frac{(x \cdot x)}{(x \cdot x)} \right) \ln \left(\frac{37 \cdot x}{(x \cdot x)} \right) dx$

38. [.] e | ln c = 2 - 1 | 2x | 4x

28. Let
$$x^{x} \ln x = t$$

$$\Rightarrow \left(x^{x} \ln x (1 + \ln x) + \frac{x^{x}}{x} \right) dx = dt$$

$$\Rightarrow x^{x} \left(\ln x + (\ln x)^{2} + \frac{1}{x} \right) dx = dt$$

$$\int dt = t + C = x^{x} \ln x + C$$

29.
$$I = \int \frac{\left(\frac{1}{x^3} - \frac{1}{x^5}\right) dx}{\sqrt{2 - \frac{2}{x^2} + \frac{1}{x^4}}}$$

Let $2 - \frac{2}{x^2} + \frac{1}{x^4} = t \implies I = \frac{1}{4} \int \frac{dt}{\sqrt{t}}$

30. Put $\ln x = t$
 $I = \int e^t \left(\frac{t - 1}{t}\right)^2 dt = \int e^t \left(\frac{1}{t}\right)^2 dt = \int e^t dt$

30. Put
$$\ln x = t$$

$$I = \int e^{t} \left(\frac{t-1}{t^{2}+1}\right)^{2} dt = \int e^{t} \left(\frac{1}{t^{2}+1} - \frac{2t}{(t^{2}+1)^{2}}\right) dt$$

$$I = \int \frac{dx}{t^{2}+1} dt = \int \frac{dx}{t^{2}+1} dt$$

31.
$$I = \int \frac{dx}{(x-1)^{3/4}(x+2)^{5/4}} = \int \frac{dx}{\left(\frac{x-1}{x+2}\right)^{3/4}(x+2)^2}$$

Let
$$\frac{x-1}{x+2} = t$$
 $\Rightarrow dt = \frac{3dx}{(x+2)^2}$ $\Rightarrow dt = \frac{3dx}{(x+2)^2}$

32.
$$\int \frac{2 - (1 + x^7)}{x(1 + x^7)} dx = -\int \frac{dx}{x} + \frac{2}{7} \int \frac{7x^6}{x^7(1 + x^7)} dx = -\ln|x| + \frac{2}{7} \ln|1 + x^7| + C$$

33.
$$I = \int \frac{(\sin^4 x - \cos^4 x)(\sin^4 x + \cos^4 x)}{1 - 2\sin^2 x \cos^2 x} dx = \int (\sin^2 x - \cos^2 x) dx = -\int \cos 2x dx$$

34.
$$I = 2^{1/3} \int \frac{(\tan x)^{1/3} d((\tan x)^{1/3})}{(\tan x)^{2/3} + 1}$$

Let $(\tan x)^{1/3} = t \implies d((\tan x)^{1/3}) = dt$

Let
$$(\tan x)^{1/3} = t \implies d((\tan x)^{1/3}) = dt$$

$$I = \frac{2^{1/3}}{2} \int \frac{2t}{t^2 + 1} dt$$

35.
$$\int \frac{(2012)^x}{\sqrt{1-(2012)^{2x}}} \cdot (2012)^{\sin^{-1}(2012)^x} dx$$

Let
$$\sin^{-1}(2012)^x = t \implies \frac{1}{\ln 2012} \int (2012)^t dt = \frac{(2012)^{\sin^{-1}(2012)^x}}{\ln^2(2012)} + C$$

108

36. Let
$$x + 1 = t^2 \implies dx = 2t dt$$

$$2\int \frac{(t^2+1)\,dt}{t^4+t^2+1} = 2\int \frac{\left(1+\frac{1}{t^2}\right)dt}{\left(t-\frac{1}{t}\right)^2+3}$$

37.
$$\int \left(\frac{f(x)g'(x) - f'(x)g(x)}{f(x)g(x)} \right) \ln \left(\frac{g(x)}{f(x)} \right) dx$$

Let
$$\frac{g(x)}{f(x)} = t$$
 $\Rightarrow \frac{f(x)g'(x) - g(x)f'(x)}{(f(x))^2} dx = dt$; $\int \frac{\ln t}{t} dt = \frac{(\ln t)^2}{2} + C$

$$38. \int \left(\int e^x \left(\ln x + \frac{2}{x} - \frac{1}{x^2} \right) dx \right) dx$$

$$\int \left(\int e^{x} \left(\ln x + \frac{1}{x} \right) dx + \int e^{x} \left(\frac{1}{x} - \frac{1}{x^{2}} \right) dx \right) dx = \int \left(e^{x} \left(\ln x + \frac{1}{x} \right) + C_{1} \right) dx = e^{x} \ln x + C_{1}x + C_{2}$$

39.
$$f(x) = \pi^2 \left(\left| \frac{-t \cos(x + \pi t)}{\pi} \right|_0^1 + \int_0^1 \frac{1 \cdot \cos(x + \pi t)}{\pi} dt \right) = \pi \cos x - 2 \sin x$$

40.
$$\frac{2}{x} \le \sqrt{5} \Rightarrow x \in \left[\frac{2}{\sqrt{5}}, 1\right]$$

$$\therefore \int_{0}^{1} f(x) dx = \int_{0}^{2/\sqrt{5}} f(x) dx + \int_{2/\sqrt{5}}^{1} f(x) dx \le \sqrt{5} \left(\frac{2}{\sqrt{5}} - 0 \right) + \int_{2/\sqrt{5}}^{1} \frac{2}{x} dx$$

$$\therefore \int_0^1 f(x) \, dx \le 2 + 2 \left[\ln x \right]_{2/\sqrt{5}}^1$$

$$\therefore \quad a = 2 + 2 \ln \left[\frac{\sqrt{5}}{2} \right]$$

42.
$$f(0) = 0$$
, $f(2\pi) = 2\pi$

$$\int_{0}^{2\pi} f(x) dx + \int_{0}^{2\pi} f^{-1}(x) dx = \int_{0}^{2\pi} 2\pi dx = 4\pi^{2}$$

$$\Rightarrow \left[\frac{x^2}{2} - \cos x\right]_0^{2\pi} + I = 4\pi^2 \Rightarrow I = \int_0^{2\pi} f^{-1}(x) dx = 2\pi^2$$

43.
$$= 2 \left[2 \int_{0}^{1} e^{-x^{4}} dx - \int_{0}^{1} 8x^{4} e^{-x^{4}} dx \right] = 2 \left[2 \left[(xe^{-x^{4}})_{0}^{1} + \int_{0}^{1} 4x^{4} e^{-x^{4}} dx \right] - \int_{0}^{1} 8x^{4} e^{-x^{4}} dx \right]$$

$$= \frac{4}{e}$$

46. Put
$$y-2=z$$

$$I = \int_{2}^{2} \frac{z^{2}+1}{2z^{2}+3} \sin(z) dz = 0$$

47.
$$\int_{1}^{4} \frac{3}{x} e^{\sin x^{3}} dx$$
Let $x^{3} = t \implies 3x^{2} dx = dt$

$$\int_{1}^{64} \frac{e^{\sin t}}{t} dt = F(64) - F(1)$$

51.
$$\lim_{x \to \infty} x \int_{0}^{x} e^{t^{2} - x^{2}} dt = \lim_{x \to \infty} \frac{x \cdot \int_{0}^{x} e^{t^{2}} dt}{e^{x^{2}}}$$

Apply L' Hospital's rule,

Apply L' Hospital's rule,
$$\lim_{x \to \infty} \frac{x \cdot (e^{x^2}) + \int_0^x e^{t^2} dt \cdot 1}{e^{x^2} \cdot 2x} = \lim_{x \to \infty} \left(\frac{1}{2} + \frac{\int_0^x e^{t^2} dt}{2x e^{x^2}} \right) = \frac{1}{2}$$

52.
$$L = \sum_{r=1}^{n} \frac{2 \cdot r + n}{r^2 + n \cdot r + n^2} = \int_{0}^{1} \frac{(2x+1) dx}{x^2 + x + 1} = \ln(x^2 + x + 1) \Big|_{0}^{1}$$

$$L = \ln 3$$

53. Let
$$\sqrt[3]{x^2 + 2x} = y = f(x)$$

 $x = -1 + (y^3 + 1)^{1/2}$
 $I = \int_0^2 (f^{-1}(x) + f(x) + 1) dx$

Consider
$$\int_{0}^{2} f^{-1}(x) = \int_{0}^{2} tf'(t) dt$$
 Let $f^{-1}(x) = t$; $x = f(t)$; $dx = f'(t) dt$
$$= tf(t) |_{0}^{2} - \int_{0}^{2} dx = 6$$

54. Put
$$x = 2 \tan \theta$$
 then $I = \int_{0}^{\pi/2} \left(\frac{\ln 2 + \ln \tan \theta}{4 \sec^2 \theta} \right) 2 \sec^2 \theta \, d\theta$ then solve it.

55. Put
$$x - 5 = t$$

 $x = 0, t = -5$
 $x = 10, t = 5$

$$\int_{-5}^{5} (t + t^2 + t^3) dt = \frac{t^3}{3} \Big|_{-5}^{5} = \frac{250}{3}$$

56. Let
$$I = \int_{0}^{\infty} \frac{dx}{(1+x^{9})(1+x^{2})}$$
Put $x = \frac{1}{t}$ $\Rightarrow dx = -\frac{1}{t^{2}} dt$...

$$I = \int_{\infty}^{0} \frac{-\frac{dt}{t^{2}}}{\left(\frac{t^{9}+1}{t^{9}}\right)\left(\frac{1+t^{2}}{t^{2}}\right)} = \int_{0}^{\infty} \frac{t^{9}dt}{(t^{9}+1)(1+t^{2})} \dots (2)$$

On adding (1) & (2),

$$2I = \int_{0}^{\infty} \frac{dt}{(1+t^2)} = \tan^{-1} t \Big|_{0}^{\infty}$$

$$2I = \frac{\pi}{2} \implies I = \frac{\pi}{4}$$

57.
$$I = \int_{0}^{\pi/2} \left(\frac{1 + \sin 3x}{1 + 2\sin x} \right) dx = \int_{0}^{\pi/2} \frac{1 + 3\sin x - 4\sin^{3} x}{1 + 2\sin x} dx$$
$$= \int_{0}^{\pi/2} \frac{(1 + 2\sin x)(-2\sin^{2} x + \sin x + 1)}{(1 + 2\sin x)} = -2\left(\frac{1}{2}\frac{\pi}{2}\right) + 1 + \frac{\pi}{2} = 1$$

58.
$$\lim_{x \to \infty} \frac{(\tan^{-1} x)^2}{\frac{1}{2\sqrt{x^2 + 1}}}$$

$$\lim_{x \to \infty} (\tan^{-1} x)^2 \frac{\sqrt{1 + x^2}}{x} = \frac{\pi^2}{4}$$
59. Let $t = \frac{2013}{4}(x^2 + r^2)$

59. Let
$$t = \prod_{r=1}^{2013} (x^2 + r^2)$$

$$\ln t = \sum_{r=1}^{2013} \ln(x^2 + r^2)$$

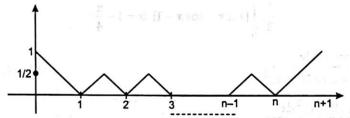
$$\frac{1}{t} dt = \sum_{r=1}^{2013} \frac{2x}{x^2 + r^2} dx \implies dt = 2\left(\sum_{r=1}^{2013} \frac{x}{x^2 + r^2}\right) t dx$$

$$66. \lim_{n \to \infty} \left[\int_{0}^{1/n} \sin \frac{\pi}{2n} dx + \int_{1/n}^{2/n} \sin \frac{2\pi}{2n} dx + \dots + \int_{1-1/n}^{1} \sin \frac{n\pi}{2n} dx \right]$$

$$\lim_{n \to \infty} \frac{1}{n} \left[\sin \frac{\pi}{2n} + \sin \frac{2\pi}{2n} + \dots + \sin \frac{n\pi}{2n} \right]$$

$$\lim_{n \to \infty} \frac{\sin \left(\frac{n\pi}{4n} \right)}{n \sin \frac{\pi}{4n}} \sin \left(\frac{(n+1)\pi}{4n} \right) = \frac{2}{\pi}$$

67.
$$\int_{0}^{n+1} \min\{|x-1|,|x-2|,|x-3|,.....|x-n|\} dx = \frac{1}{2}(1) + \frac{1}{2} \times \frac{1}{2} \times (n-1) + \frac{1}{2} \times (1) = \frac{n+3}{4}$$



68.
$$S_k = \frac{1}{2} k \sin\left(\frac{k\pi}{2n}\right)$$

$$\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^{n} \frac{1}{2} k \sin \frac{k\pi}{2n} = \int_{0}^{1} \frac{1}{2} x \sin \left(\frac{\pi x}{2}\right) dx = \frac{2}{\pi^2}$$

71.
$$f(x) = \int_{0}^{g(x)} \frac{dt}{\sqrt{1+t^3}}$$
 $g'(x) = -\sin x \cdot (1+\sin(\cos x))^2$

$$f'(x) = g'(x) \cdot \frac{1}{\sqrt{1 + (g(x))^3}}$$

$$f'\left(\frac{\pi}{2}\right) = g'\left(\frac{\pi}{2}\right) = -\sin\frac{\pi}{2} = -1$$

72.
$$x^2 f(x) = \int_{a}^{x} (4t^2 - 2f'(t)) dt$$

$$x^2 f'(x) + 2x f(x) = 4x^2 - 2f'(x)$$

$$16f'(4) + 8f(4) = 64 - 2f'(4)$$

$$18f'(4) = 64$$

$$18f'(4) = 64$$

$$9f'(4) = 32$$

Indefinite and Definite Integration

113

73.
$$\lim_{n \to \infty} \sum_{r=1}^{2n} \frac{r^2}{n^3 + r^3} = \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{2n} \frac{\left(\frac{r}{n}\right)^2}{1 + \left(\frac{r}{n}\right)^3} = \int_0^2 \frac{x^2 dx}{1 + x^3} = \left|\frac{1}{3} \ln|1 + x^3|\right|_0^2 = \frac{1}{3} \ln 9$$

74.
$$\int_{0}^{2\pi} \cos^{-1}(\cos x) \, dx = 2 \int_{0}^{\pi} \cos^{-1}(\cos x) \, dx = 2 \cdot \left| \frac{x^2}{2} \right|_{0}^{\pi} = \pi^2$$

75.
$$2f(x) = \int_{0}^{x} (x^2 - 2xt + t^2) g(t) dt$$

$$2f(x) = \int_{0}^{x} (x^{2} - 2xt + t^{2}) g(t) dt$$

$$2f(x) = x^{2} \int_{0}^{x} g(t) dt - 2x \int_{0}^{x} t \cdot g(t) dt + \int_{0}^{x} t^{2} g(t) dt$$

$$2f'(x) = x^{2} \cdot g(x) + \int_{0}^{x} g(t) dt \cdot 2x - 2x(x g(x)) - \int_{0}^{x} t \cdot g(t) dt \cdot 2 + x^{2} g(x)$$

$$2f'(x) = x^{2} \cdot g(x) + \int_{0}^{x} g(t) dt \cdot 2x - 2x(x g(x)) - \int_{0}^{x} t \cdot g(t) dt \cdot 2 + x^{2} g(x)$$

$$2f'(x) = 2x \int_{0}^{x} g(t) dt - 2 \int_{0}^{x} tg(t) dt$$

$$f''(x) = x \cdot g(x) + \int_0^x g(t) dt - xg(x)$$

$$f''(x) = \int_0^x g(t) dt$$

$$f'''(x) = g(x)$$

76.
$$I = \int_{0}^{\pi} \frac{x^3 \cos^4 x \sin^2 x}{\pi^2 - 3\pi x + 3x^2} dx = \lambda \int_{0}^{\pi/2} \sin^2 x \, dx$$

$$I = \int_{0}^{\pi} \frac{(\pi - x)^{3} \cos^{4} x \sin^{2} x}{\pi^{2} - 3\pi x + 3x^{2}} dx \implies 2I = \int_{0}^{\pi} \pi \cos^{4} x \sin^{2} x dx$$

77.
$$\frac{1}{2} \cdot \left| \tan^{-1} \left(\frac{2x}{1 - x^2} \right) \right|_0^{\sqrt{3}} = \left| \tan^{-1} x \right|_0^{\sqrt{3}} = \frac{\pi}{3} - 0 = \frac{\pi}{3}$$

78.
$$\int_{0}^{3} \{x\}^{[x]} dx = \int_{0}^{3} (x - [x])^{[x]} dx = \int_{0}^{1} 1 \cdot dx + \int_{1}^{2} (x - 1) dx + \int_{2}^{3} (x - 2)^{2} dx$$

79.
$$I = \int_{0}^{1} \frac{\tan^{-1} x}{x} dx$$

$$x = \tan \theta$$

 $x_p \times_{-1} x_p = x_p = x_p = x_p \times_{-1} x_p \times_{-2} x_p = x_p = x_p \times_{-1} x_p \times_{-2} x$

$$I = \int_{0}^{\pi/4} \frac{\theta}{\tan \theta} \cdot \sec^{2}\theta \, d\theta = \int_{0}^{\pi/4} \frac{2\theta}{\sin 2\theta} \, d\theta = \frac{1}{2} \int_{0}^{\pi/2} \frac{t}{\sin t} \, dt$$

$$80. \int_{0}^{4/\pi} \frac{3x^{2}}{1} \cdot \frac{\sin \frac{1}{x}}{x} \, dx - \int_{0}^{4/\pi} x \cos \frac{1}{x} \, dx = \left| \sin \frac{1}{x} \cdot x^{3} \right|_{0}^{4/\pi} - \int_{0}^{4/\pi} \cos \frac{1}{x} \cdot \left(-\frac{1}{x^{2}} \right) \cdot x^{3} \, dx - \int_{0}^{4/\pi} x \cos \frac{1}{x} \, dx$$

$$\frac{64}{\pi^{3}} \cdot \frac{1}{\sqrt{2}} - \lim_{x \to 0} \left(x^{3} \sin \frac{1}{x} \right) = \frac{32\sqrt{2}}{\pi^{3}}$$

$$81. \int_{-1}^{x} \left(8t^{2} + \frac{28t}{3} + 4 \right) dt = \frac{\frac{3x}{2} + 1}{\log_{(x+1)} \sqrt{x+1}}$$

$$\left| \frac{8t^{3}}{3} + \frac{14t^{2}}{3} + 4t \right|_{-1}^{x} = \frac{\frac{3x}{2} + 1}{\frac{1}{2}}$$

$$\frac{8x^{3}}{3} + \frac{14x^{2}}{3} + 4x - \left(-\frac{8}{3} + \frac{14}{3} - 4 \right) = 3x + 2$$

$$8x^{3} + 14x^{2} + 12x + 8 - 14 + 12 = 9x + 6$$

$$8x^{3} + 14x^{2} + 3x = 0$$

$$x(8x^{2} + 14x + 3) = 0$$

$$x(2x+3)(4x+1) = 0$$

But
$$x > -1 \& x \neq 0$$

So,
$$x = -\frac{1}{4}$$

85.
$$f(x) = \int_{0}^{4} e^{|x-t|} dt = \int_{0}^{x} e^{(x-t)} dt + \int_{x}^{4} e^{(t-x)} dt = e^{x} + e^{4-x} - 2 \ge 2e^{2} - 2$$

86.
$$\frac{1}{4} \int_{0}^{\infty} \frac{4\cos^{3}x}{x} dx = \frac{1}{4} \int_{0}^{\infty} \frac{\cos 3x + 3\cos x}{x} dx = \frac{1}{4} \int_{0}^{\infty} \frac{\cos 3x}{x} dx + \frac{3}{4} \int_{0}^{\infty} \frac{\cos x}{x} dx$$

88.
$$I_{n+\frac{1}{2}} = \int_{0}^{\pi} \frac{\sin(2nx+x)}{\sin 2x} dx = \int_{0}^{\pi} \frac{\sin 2nx \cdot \cos x}{\sin 2x} dx + \int_{0}^{\pi} \frac{\cos 2nx \cdot \sin x}{\sin 2x} dx$$

$$= \frac{1}{2} \int_{0}^{\pi} \frac{\sin 2nx}{\sin x} dx + \frac{1}{2} \int_{0}^{\pi} \frac{\cos 2nx}{\cos x} dx$$
89. $f'(x) = 1 + \ln^2 x + 2\ln x = 0 \Rightarrow x = \frac{1}{e}$

89.
$$f'(x) = 1 + \ln^2 x + 2 \ln x = 0 \Rightarrow x = \frac{1}{e}$$

$$f\left(\frac{1}{e}\right) = 1 + \frac{1}{e} + \int_{1}^{1/e} (\ln^2 t + 2\ln t) dt$$
1/e

Let
$$I = \int_{1}^{1/e} (\ln^2 t + 2 \ln t) dt$$

$$\ln t = x \Rightarrow t = e^{x}; dt = e^{x} dx = \int_{0}^{1} (x^{2} + 2x) e^{x} dx = \left[e^{x} \cdot x^{2}\right]_{0}^{1} = \frac{1}{e} (x^{2} + 2x) e^{x} dx = \left[e^{x} \cdot x^{2}\right]_{0}^{1} = \frac{1}{e} (x^{2} + 2x) e^{x} dx = \left[e^{x} \cdot x^{2}\right]_{0}^{1} = \frac{1}{e} (x^{2} + 2x) e^{x} dx = \left[e^{x} \cdot x^{2}\right]_{0}^{1} = \frac{1}{e} (x^{2} + 2x) e^{x} dx = \left[e^{x} \cdot x^{2}\right]_{0}^{1} = \frac{1}{e} (x^{2} + 2x) e^{x} dx = \left[e^{x} \cdot x^{2}\right]_{0}^{1} = \frac{1}{e} (x^{2} + 2x) e^{x} dx = \left[e^{x} \cdot x^{2}\right]_{0}^{1} = \frac{1}{e} (x^{2} + 2x) e^{x} dx = \left[e^{x} \cdot x^{2}\right]_{0}^{1} = \frac{1}{e} (x^{2} + 2x) e^{x} dx = \left[e^{x} \cdot x^{2}\right]_{0}^{1} = \frac{1}{e} (x^{2} + 2x) e^{x} dx = \left[e^{x} \cdot x^{2}\right]_{0}^{1} = \frac{1}{e} (x^{2} + 2x) e^{x} dx = \left[e^{x} \cdot x^{2}\right]_{0}^{1} = \frac{1}{e} (x^{2} + 2x) e^{x} dx = \left[e^{x} \cdot x^{2}\right]_{0}^{1} = \frac{1}{e} (x^{2} + 2x) e^{x} dx = \left[e^{x} \cdot x^{2}\right]_{0}^{1} = \frac{1}{e} (x^{2} + 2x) e^{x} dx = \left[e^{x} \cdot x^{2}\right]_{0}^{1} = \frac{1}{e} (x^{2} + 2x) e^{x} dx = \left[e^{x} \cdot x^{2}\right]_{0}^{1} = \frac{1}{e} (x^{2} + 2x) e^{x} dx = \left[e^{x} \cdot x^{2}\right]_{0}^{1} = \frac{1}{e} (x^{2} + 2x) e^{x} dx = \left[e^{x} \cdot x^{2}\right]_{0}^{1} = \frac{1}{e} (x^{2} + 2x) e^{x} dx = \left[e^{x} \cdot x^{2}\right]_{0}^{1} = \frac{1}{e} (x^{2} + 2x) e^{x} dx = \left[e^{x} \cdot x^{2}\right]_{0}^{1} = \frac{1}{e} (x^{2} + 2x) e^{x} dx = \left[e^{x} \cdot x^{2}\right]_{0}^{1} = \frac{1}{e} (x^{2} + 2x) e^{x} dx = \left[e^{x} \cdot x^{2}\right]_{0}^{1} = \frac{1}{e} (x^{2} + 2x) e^{x} dx = \left[e^{x} \cdot x^{2}\right]_{0}^{1} = \frac{1}{e} (x^{2} + 2x) e^{x} dx = \left[e^{x} \cdot x^{2}\right]_{0}^{1} = \frac{1}{e} (x^{2} + 2x) e^{x} dx = \left[e^{x} \cdot x^{2}\right]_{0}^{1} = \frac{1}{e} (x^{2} + 2x) e^{x} dx = \left[e^{x} \cdot x^{2}\right]_{0}^{1} = \left$$

90.
$$f(x) = x^2 + \int_0^x e^{-t} f(x-t) dt$$

$$f(x) = x^{2} + \int_{0}^{x} e^{-t} f(x - t) dt$$

$$x^{2} + \int_{0}^{x} e^{t - x} f(t) dt = x^{2} + e^{-x} \int_{0}^{x} e^{t} f(t) dt$$

$$\Rightarrow f'(x) = 2x - e^{-x} \int_{0}^{x} e^{t} f(t) dt + f(x)$$

$$\Rightarrow f'(x) = 2x + x^2 \Rightarrow f(x) = \frac{x^3}{3} + x^2$$

$$\downarrow 1 \quad 2x^2 + 6x = 1$$

$$\Rightarrow \qquad y = \frac{1}{4}(-2x^2 + 6x - 1)$$

91.
$$I = \int_{-\pi/2}^{\pi/2} \frac{\cos^2 x}{1 + 5^x} dx = \int_{-\pi/2}^{\pi/2} \frac{\cos^2 x}{1 + 5^{-x}} dx$$

$$\Rightarrow 2I = \int_{-\pi/2}^{\pi/2} \cos^2 x \, dx$$

$$\Rightarrow I = \int_0^{\pi/2} \cos^2 x \, dx = \frac{\pi}{4}$$

92.
$$\int \left(\frac{x^2 - x + 1}{x^2 + 1}\right) e^{\cot^{-1} x} dx$$
Let $\cot^{-1} x = 1 \Rightarrow \frac{-1}{1 + x^2} dx = dt$

$$\int e^t (\cot t - \csc^2 t) dt = e^t \cdot \cot t + c$$

93.
$$\lim_{x \to \infty} \frac{1}{n} \sum_{r=1}^{n} \left(\frac{r\sqrt{n^2 + r^2}}{n^2} \right) = \lim_{x \to \infty} \frac{1}{n} \sum_{r=1}^{n} \frac{r}{n} \sqrt{1 + \left(\frac{r}{n}\right)^2} = \int_{1}^{1} x\sqrt{1 + x^2} dx = \left[\frac{(1 + x^2)^{3/2}}{3} \right]_{0}^{1}$$

94.
$$\int \frac{(x^3 - 1)}{(x^4 + 1)(x + 1)} dx = \int \frac{x^3}{x^4 + 1} dx - \int \frac{1}{x + 1} dx = \frac{1}{4} \ln(1 + x^4) - \ln(1 + x) + c$$

95.
$$\lim_{x \to 0^{+}} \frac{(\cos^{-1} \cos x)(-\sin x)}{2 - 2\cos 2x} = \lim_{x \to 0^{+}} \frac{-x \sin x}{4 \sin^{2} x} = -\frac{1}{4}$$

$$\Rightarrow 0 \qquad x > \tan 1$$

96.
$$f(x) = \begin{cases} 0 & x > \tan 1 \\ \cos x & 0 < x < \tan 1 \\ \cos \frac{x}{2} & x = \tan 1 \end{cases}$$

$$\int_{0}^{\infty} f(x) \, dx = \int_{0}^{\tan 1} \cos x + \int_{\tan 1}^{\infty} 0 \, dx = \sin(\tan 1)$$

97.
$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{k}{n^2 + n + 2k} \right) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left(\frac{\frac{k}{n}}{1 + \frac{1}{n} + \frac{2k}{n^2}} \right) = \int_{0}^{1} x \, dx$$

98.
$$\lim_{y \to 1^{+}} \frac{\int_{1}^{y} |t-1| dt}{\tan(y-1)} \Rightarrow \lim_{y \to 1^{+}} \frac{y-1}{\sec^{2}(y-1)} = 0$$
 (Applying L'Hospital Rule)

 x^{-1} , $\int_{\mathbb{R}^{n-1}} e^{t} \cdot f(t) dt = e^{-2t} \cdot e^{-t} \int_{\mathbb{R}^{n-1}} e^{t} \cdot f(t) dt$

99.
$$\int_0^1 \frac{dx}{(1+x^2)^4} = \left[\frac{x}{2(4-1)(1+x^2)^{4-1}} \right]_0^1 + \frac{5}{6} \int_0^1 \frac{dx}{(1+x^2)^3}$$
$$= \left(\frac{1}{6(2)^3} - 0 \right) + \frac{5}{6} \left[\frac{x}{2(2)(1+x^2)^2} \right]_0^1 + \frac{5}{6} \cdot \frac{3}{4} \int_0^1 \frac{dx}{(1+x^2)^2}$$

117

...(1)

Indefinite and Definite Integration

$$= \frac{1}{48} + \left(\frac{5}{6}\right) \left[\frac{1}{16} - 0\right] + \frac{5}{8} \left[\frac{x}{2(1)(1+x^2)}\right]_0^1 + \frac{5}{8} \times \frac{1}{2} \int_0^1 \frac{dx}{1+x^2}$$

$$= \frac{1}{48} + \frac{5}{6 \times 16} + \frac{5}{8} \left(\frac{1}{4} - 0\right) + \frac{5}{16} \left[\tan^{-1} x\right]_0^1$$

$$= \frac{7}{6 \times 16} + \frac{5}{8 \times 4} + \frac{5}{16} \left[\frac{\pi}{4} - 0\right]$$

$$= \frac{22}{6 \times 16} + \frac{5\pi}{64}$$

$$= \frac{11}{48} + \frac{5\pi}{64}$$
On:

www.jeebooks.in

Alternate solution:

tion:

$$I = \int_0^1 \frac{dx}{(1+x^2)^4}$$

Put $x = \tan \theta$; therefore, $dx = \sec^2 \theta d\theta$.

$$I = \int_0^{\pi/4} \frac{\sec^2 \theta \, d\theta}{(\sec \theta)^8}$$

That is,

$$I = \int_{0}^{\pi/4} (\cos \theta)^{6} d\theta$$

$$= \int_{0}^{\pi/4} \left(\frac{3 \cos \theta + \cos 3\theta}{4} \right)^{2} d\theta$$

$$= \frac{9}{16} \int_{0}^{\pi/4} \cos^{2} \theta d\theta + \frac{1}{16} \int_{0}^{\pi/4} (\cos 3\theta)^{2} d\theta + \frac{3}{8} \int_{0}^{\pi/4} \cos \theta \cos 3\theta d\theta$$

$$= \frac{9}{16} \int_{0}^{\pi/4} \frac{1 + \cos 2\theta}{2} d\theta + \frac{1}{16} \int_{0}^{\pi/4} \frac{1 + \cos 6\theta}{2} d\theta + \frac{3}{8} \int_{0}^{\pi/4} \frac{\cos 4\theta + \cos 2\theta}{2} d\theta$$

$$= \frac{9}{32} \left[\theta + \frac{\sin 2\theta}{2} \right]_{0}^{\pi/4} + \frac{1}{16 \times 2} \left[\theta + \frac{\sin 6\theta}{6} \right]_{0}^{\pi/4} + \frac{3}{8 \times 2} \left[\frac{\sin 4\theta}{4} + \frac{\sin 2\theta}{2} \right]_{0}^{\pi/4}$$

$$= \left(\frac{9}{32} \right) \left[\frac{\pi}{4} + \frac{1}{2} \right] + \frac{1}{16 \times 2} \left[\frac{\pi}{4} - \frac{1}{6} \right] + \frac{3}{8 \times 2} \left[0 + \frac{1}{2} - 0 \right]$$

$$= \frac{5}{64\pi} + \frac{11}{48}$$

$$I = \int_{0}^{\pi/4} (\sin x)^{4} dx \qquad \dots (1)$$

100. We have,

We know that,
$$\sin^2 x = \frac{1 - \cos 2x}{2}$$

Therefore,

$$\sin^4 x = (\sin x)^4 = \left(\frac{1 - \cos 2x}{2}\right)^2$$

$$= \frac{1}{4} [1 - 2\cos 2x + (\cos 2x)^2]$$

$$= \frac{1}{4} \left(1 - 2\cos 2x + \frac{1 + \cos 4x}{2}\right)$$

$$= \frac{1}{4} \left(\frac{3}{2} - 2\cos 2x + \frac{\cos 4x}{2}\right)$$

Substituting this value of $\sin^4 x$ in Eq. (1), we get

$$I = \int_{0}^{\pi/4} \left(\frac{3}{8} - \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x\right) dx$$

$$= \left[\frac{3}{8}x\right]_{0}^{\pi/4} - \frac{1}{4}\left[\sin 2x\right]_{0}^{\pi/4} + \frac{1}{32}\left[\sin 4x\right]_{0}^{\pi/4}$$

$$= \left(\frac{3}{8} \cdot \frac{\pi}{4}\right) - \frac{1}{4}(1 - 0) + \frac{1}{32}(0 - 0)$$

$$= \frac{3\pi}{32} - \frac{1}{4}$$

Alternate solution: We have,

$$I = \int_{0}^{\pi/4} (\sin x)^4 dx$$

which can be written as

$$J = \int (\sin^2 x)(1 - \cos^2 x) dx$$

$$= \int \sin^2 x dx - \frac{1}{4} \int 4 \sin^2 x \cos^2 x dx$$

$$= \int \frac{1 - \cos 2x}{2} dx - \frac{1}{4} \int (\sin 2x)^2 dx$$

$$= \frac{1}{2} x - \frac{1}{4} \sin 2x - \frac{1}{4} \int \frac{1 - \cos 4x}{2} dx$$

$$= \frac{x}{2} - \frac{\sin 2x}{4} - \frac{1}{8} x + \frac{1}{32} \sin 4x + c$$

$$= \frac{3}{8} x - \frac{\sin 2x}{4} + \frac{\sin 4x}{32} + c$$

Using the given limits, the above equation becomes

$$I = [J]_0^{\pi/4} = \left[\frac{3}{8}x\right]_0^{\pi/4} - \left[\frac{\sin 2x}{4}\right]_0^{\pi/4} + \left[\frac{\sin 4x}{32}\right]_0^{\pi/4}$$
$$= \frac{3\pi}{32} - \frac{1}{4}$$

101.
$$\int \frac{(\cos 9x + \cos 6x)\sin 5x}{\sin 10x - \sin 5x} dx = \int 2\cos \frac{5x}{2} \cos \frac{3x}{2} = \int (\cos 4x + \cos x)$$
$$= \frac{\sin 4x}{4} + \sin x + C$$

$$A=\frac{1}{4}, B=1$$

102.
$$\int \frac{\frac{dx}{x^{2014}}}{1 + \frac{1}{x^{2013}}} = \frac{1}{2013} \ln \left(\frac{x^{2013}}{1 + x^{2013}} \right) + C$$

103.
$$\frac{1}{2} \int_0^1 x \cdot (2x \cdot e^{-x^2}) dx = \frac{1}{2} \left[\left(-xe^{-x^2} \right) + \int_0^1 e^{-x^2} dx \right]$$

$$= \frac{1}{2} \left[-\frac{1}{e} + a \right]$$

$$104. \ 2 \left[\int_0^1 f(x) \, dx + \int_1^2 f(x) \, dx + \int_2^3 f(x) \, dx \right] + \int_3^4 f(x) \, dx + \int_4^5 f(x) \, dx$$

$$= 2 \left[\frac{0^2}{2} + \frac{1^2}{2} + \frac{2^2}{2} \right] + \frac{3^2}{2} + \frac{4^2}{2} = \frac{35}{2}$$

$$105. \, \frac{1}{3} \int \frac{3x^2}{x^6 (1+x^3)^2} \, dx$$

Let
$$1+x^3=t \Rightarrow 3x^2dx=dt$$

Let
$$1+x^3 = t \Rightarrow 3x^2 dx = dt$$

$$\Rightarrow \frac{1}{3} \int \frac{dt}{t^2 (t-1)^2} = \frac{1}{3} \int \left(\frac{2}{t} + \frac{1}{t^2} - \frac{2}{t-1} + \frac{1}{(t-1)^2} \right) dt$$

106.
$$\lim_{n \to \infty} \sum_{r=1}^{3n} \frac{1}{n\sqrt{1+\frac{r}{n}}} = \int_{0}^{3} \frac{1}{\sqrt{1+x}} dx = (2\sqrt{1+x})_{0}^{3} = 2$$

107.
$$\int_{0}^{2} x f(x) dx = \left[\frac{x^{2}}{2} f(x) \right]_{0}^{2} - \int_{0}^{2} \frac{x^{2}}{2} f'(x) dx = 0 + \int_{0}^{2} \frac{x^{2}}{2\sqrt{1 + x^{3}}} dx$$

 $(a, b) = \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) \right) \right) \right) \right)}{1} \right) \right) \right)} \right) \right) \right) \right) \right)} \right) \right)} \right) \right) \right]$

108.
$$\int_{0}^{\pi/3} (\ln(\cos x + \sqrt{3}\sin x) - \ln\cos x) \, dx$$

$$= \int_{0}^{\pi/3} \left\{ \ln \left(2 \cos \left(x - \frac{\pi}{3} \right) \right) - \ln \cos x \right\} dx = \frac{\pi}{3} \ln 2$$

$$\mathbf{109.} \sum_{r=1}^{100} \int_{0}^{1} f(r - 1 + x) \, dx = \int_{0}^{1} f(x) \, dx + \int_{0}^{1} f(x + 1) \, dx + \int_{0}^{1} f(x + 2) \, dx + \dots + \int_{0}^{1} f(x + 99) \, dx$$

$$= \int_{0}^{1} f(x) \, dx + \int_{1}^{2} f(x) \, dx + \int_{2}^{3} f(x) \, dx + \dots + \int_{99}^{100} f(x) \, dx = a$$

110.
$$\lim_{n \to \infty} \sum_{k=0}^{n} x^2 \left(\frac{(2x)^k}{k!} \right) = x^2 \cdot e^{2x} \implies \int_0^1 x^2 e^{2x} dx = \frac{e^2 - 1}{4}$$

111.
$$\int x^5 \sqrt{1+x^3} \, dx$$

Let
$$1+x^3=t^2$$

 $3x^2dx=2t dt$

$$\frac{2}{3} \int t^2 (t^2 - 1) dt = \frac{2}{3} \left(\frac{t^5}{5} - \frac{t^3}{3} \right) + c$$

112.
$$f'(x) = \frac{\sin x}{x}$$

$$f'(x) > 0 \ \forall \ x \in (0, \pi)$$

$$f'(x) < 0 \ \forall \ x \in (\pi, 2\pi)$$

113.
$$\int \frac{x(x^2+1)+3(x^2+3)}{(x^2+1)(x^2+3)} dx$$

$$\int \left(\frac{x}{x^2+3} + \frac{3}{x^2+1}\right) dx$$

$$\frac{1}{2} \ln|x^2+3| + 3 \tan^{-1} x + c$$

$$\frac{1}{2}\ln|x^2+3|+3\tan^{-1}x+c$$

114.
$$\int \frac{\sqrt{\sec^5 x}}{\sqrt{\sin^3 x}} dx = \int \frac{\sec^4 x}{\sqrt{\tan^3 x}} dx$$

Let
$$\tan x = t^2$$

$$\sec^2 x dx = 2t dt$$

$$\tan x = t^{2}$$

$$\sec^{2} x \, dx = 2t \, dt$$

$$\int \frac{(1+t^{4}) \cdot 2t \cdot dt}{t^{3}} = 2 \int \left(\frac{1}{t^{2}} + t^{2}\right) dt$$

Indefinite and Definite Integration

115. Let
$$tx = y \Rightarrow x dt = dy$$

$$\lim_{x \to 0} \frac{\int_{0}^{x^{2}} e^{\sin y} dy}{x^{2}} = \lim_{x \to 0} \frac{e^{\sin x^{2}} 2x}{2x} = 1$$

116.
$$\int_{0}^{\pi/2} \frac{\cos 2x}{x} dx = \left(\frac{\sin 2x}{2x}\right)_{0}^{\pi/2} + 2 \int_{0}^{\pi/2} \frac{\sin 2x}{(2x)^{2}} dx = -1 + \int_{0}^{\pi} \frac{\sin \theta}{\theta^{2\pi}} d\theta$$

$$(\because \text{Let } 2x = \theta)$$

$$(\Rightarrow \text{Let } 2x = \theta)$$

Exercise-2: One or More than One Answer is/are Correct

1.
$$\int \frac{dx}{(1+\sqrt{x})^8} \qquad \text{Let } x = t^2 \Rightarrow dx = 2t \, dt$$

$$\int \frac{2t \, dt}{(1+t)^8} = 2 \left[\int \frac{dt}{(t+1)^7} - \int \frac{dt}{(t+1)^8} \right] = 2 \left[-\frac{1}{6(1+t)^6} + \frac{1}{7(1+t)^7} \right] + C$$

2.
$$\int_{-\alpha}^{\alpha} \left[e^{x} + \cos x \ln (x + \sqrt{1 + x^{2}}) \right] dx = 2 \int_{0}^{\alpha} e^{x} dx = 2 (e^{\alpha} - 1) \implies e^{\alpha} > \frac{7}{4}$$

3.
$$I = \int \sqrt{\frac{x}{a^3 - x^3}} dx$$
 Let $x^{3/2} = a^{3/2} \cos \theta$

$$= \int \frac{\sqrt{x}}{\sqrt{(a^{3/2})^2 - (x^{3/2})^2}} dx = \frac{2}{3} \int \frac{a^{3/2} \cos \theta}{\sqrt{a^3 - a^3 \sin^2 \theta}} d\theta$$

$$= \frac{2}{3} \int d\theta = \frac{2}{3} \theta + C = \frac{2}{3} \sin^{-1} \left(\frac{x^{3/2}}{a^{3/2}}\right) + C$$

4.
$$\int x \sin x \sec^3 x \, dx = \int \underbrace{\frac{x}{1}} \left(\underbrace{\frac{\tan x \sec^2 x}{1}} \right) dx = x \frac{\tan^2 x}{2} - \int \frac{\tan^2 x}{2} \, dx$$

$$= x \frac{\tan^2 x}{2} - \int \frac{(\sec^2 x - 1)}{2} \, dx = x \frac{\tan^2 x}{2} - \frac{1}{2} (\tan x - x) + C$$

$$= \frac{1}{2} (x \sec^2 x - \tan x) + C$$

$$f(x) = \sec^2 x, \quad g(x) = \tan x$$

- (a) Clear $f(x) \notin (-1, 1)$
- (b) $\tan x = \sin x$

 $\cos x = 1 \implies \tan x$ is not defined. no solution

(c)
$$g'(x) = f(x) \forall x \in \mathbb{R} \text{ except } (2n-1)\frac{\pi}{2}$$

(d) $\sec^2 x = \tan x$

(d) $\sec^2 x = \tan x$ $1 + \tan^2 x - \tan x = 0$ has no solution.

5.
$$\int (\sin 3\theta + \sin \theta) \cos \theta \, e^{\sin \theta} \, d\theta = \int (4 \sin \theta - 4 \sin^3 \theta) \, e^{\sin \theta} \cos \theta \, d\theta$$

$$dt = \cos\theta \, d\theta = 4 \left[-t^3 + 3t^2 - 5t + 5 \right] e^t + C$$

Compare it

$$A = -4$$
, $B = -12$, $C = -20$

7.
$$I = \int_{0}^{\theta} \frac{2x \, dx}{\sqrt{(3\theta - 2x)(\theta + 2x)}} = \int_{0}^{\theta} \frac{2(\theta - x) \, dx}{\sqrt{(3\theta - 2x)(\theta + 2x)}}$$

$$\Rightarrow I = \frac{\theta}{2} \int_{0}^{\theta} \frac{dx}{\sqrt{\theta^{2} - (x - \theta/2)^{2}}}$$

8. Let
$$f(x) = a^x$$
, $F(x) = F(-x)$

8. Let
$$f(x) = a^x$$
, $F(x) = F(-x)$
9. $J = \int_{-1}^{0} \left[\cot^{-1} \left(\frac{1}{x} \right) + \cot^{-1}(x) \right] dx + \int_{0}^{2} \left(\cot^{-1} \left(\frac{1}{x} \right) + \cot^{-1} x \right) dx$
 $= \int_{-1}^{0} \left(\pi + \frac{\pi}{2} \right) dx + \int_{0}^{2} \frac{\pi}{2} dx$

$$K = \int_{0}^{\pi} dx = \pi \qquad \text{(As } 2\pi \text{ is period)}$$

11.
$$l_1 = \lim_{x \to \infty} \sqrt{\frac{x - \cos^2 x}{x + \sin x}} = 1$$

$$l_2 = \lim_{h \to 0^+} \int_{-1}^{1} \frac{h \, dx}{h^2 + x^2} = \lim_{h \to 0} 2 \tan^{-1} \frac{1}{h} = \pi$$

13.
$$\int \frac{dx}{(1+\sin^2 x)\cos^2 x} = \int \frac{\sec^4 x}{1+2\tan^2 x} dx$$

Indefinite and Definite Integration

$$= \int \frac{(1+\tan^2 x)\sec^2 x}{(1+2\tan^2 x)} dx = \frac{1}{2} \int \sec^2 x \, dx + \frac{1}{2} \int \frac{\sec^2 x \, dx}{1+2\tan^2 x}$$
$$= \frac{1}{2} \tan x + \frac{1}{2\sqrt{2}} \tan^{-1}(\sqrt{2} \tan x) + c$$

14.
$$\int \frac{(1+\sin^{2015}x) - \sqrt{1+\sin^{4030}x}}{2\sin^{2015}x}$$
 (Rationalise)
$$\int_{2014}^{2014} \frac{1}{2} dx$$

$$\int odd = 0$$

$$\int_{-2014}^{2014} \frac{1}{2} dx$$

$$\int odd = 0$$

15.
$$\tan^{-1}(nx)|_a^{\infty} = \frac{\pi}{2} - \tan^{-1}(na)$$

$$a > 0, a = 0, a < 0$$

16. Let
$$\sqrt{x} = \cos 2\theta$$

$$dx = -\sin 4\theta d\theta$$

$$I = \int_{0}^{\pi/4} \cot \theta \sin 4\theta \, d\theta \text{ and } J = \int_{0}^{\pi/4} \tan \theta \sin 4\theta \, d\theta$$

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

Diff with 'a' on both sides.

Paragraph for Question Nos. 9 to 11

2.
$$f(x) = \int (2x^3 \cos^2 x + 6x^2 \sin x \cos x - 2x^3 \sin^2 x) dx$$

$$= \int \left(\underbrace{2x^3}_{I} \underbrace{\cos 2x}_{II} + 3x^2 \sin 2x\right) dx = (2)^{3} \cdot 2 = (2)^{3$$

$$f(x) = x^3 \sin 2x + c$$

$$f(\pi) = 0 + c = 0 \implies c = 0$$

$$f(x) = x^3 \sin 2x$$

Paragraph for Question Nos. 6 to 8

1 2 A(a) do = 6 do

6.
$$g(x) = x - A$$

$$A = \int_{0}^{1} f(t) dt$$

Solution of Advanced Problems in Mathematics for JER

19

$$f(x) = \frac{x^3}{2} + 1 - x \int_0^x (x - A) dx = \frac{x^3}{2} + 1 - \frac{x^3}{2} + Ax^2$$

$$f(x) = Ax^2 + 1$$

$$A = \int_{0}^{1} Ax^{2} + 1 \implies A = \frac{3}{2}$$

$$f(x) = \frac{3x^2}{2} + 1$$
; min. $f(x) = 1$

7.
$$\frac{3}{2}x^2 + 1 = x - \frac{3}{2}$$

$$3x^2 - 2x + 5 = 0$$

 Δ < 0, no solution

8.
$$g(x) = x - \frac{3}{2}$$

$$A = \frac{1}{2} \times \frac{3}{2} \times \frac{3}{2} = \frac{9}{8}$$

Paragraph for Question Nos. 9 to 11

9.
$$\int_{0}^{a} f(x) dx - \int_{a}^{1} f(x) dx = 2f(a) + 3a + b \qquad ...(1)$$

Diff. w.r.t. 'a' on both sides,

$$(f(a) - 0) - (0 - f(a)) = 2f'(a) + 3$$

$$2f(a) = 2f'(a) + 3$$

$$(2f(a) - 3) = 2f'(a)$$

$$\frac{2f'(a)}{2f(a) - 3} = 1$$

$$\int \frac{2f'(a)}{2f(a) - 3} da = \int da$$

$$\ln|2f(a) - 3| = a + c$$

$$2f(a) - 3 = e^{a + c}$$

$$2f(a) - 3 = ke^{a}$$

$$2f(a) = ke^{a} + 3$$

Put
$$a = 1 \Rightarrow 0 = ke + 3 \Rightarrow k = -\frac{3}{e}$$

$$2f(a) = -\frac{3}{e}e^{a} + 3$$

$$f(a) = -\frac{3}{e}e^{a} + 3$$

$$f(a) = \frac{3}{2} - \frac{3}{2e}e^{a} + 3$$

$$f(x) = \frac{3}{2} - \frac{3}{2e}e^x$$

Put
$$f(x)$$
 in (1) (By taking limiting case)
$$\int_{0}^{a} \left(\frac{3}{2} - \frac{3}{2e}e^{x}\right) dx - \int_{a}^{1} \left(\frac{3}{2} - \frac{3}{2e}e^{x}\right) dx = 3 - \frac{3}{e}e^{a} + 3a + b$$
Since we have

$$\left[\left(\frac{3a}{2} - \frac{3}{2e} e^a \right) - \left(0 - \frac{3}{2e} \right) \right] - \left[\left(\frac{3}{2} - \frac{3}{2} \right) - \left(\frac{3a}{2} - \frac{3e^a}{2e} \right) \right] = 3 - \frac{3}{e} e^a + 3a + b$$

$$\frac{3}{2e} - 3 = b$$

10. Length of subtangent =
$$\left| \frac{y}{(dy/dx)} \right|^{\frac{3}{2e} - 3} = b$$

$$y = f(x) = \frac{3}{2} - \frac{3}{2e} e^{x}$$

$$y = f(x) = \frac{3}{2} - \frac{3}{2e}e$$

$$\frac{dy}{dx} = f'(x) = 0 - \frac{3}{2e}e^{x}$$

$$\left. \frac{dy}{dx} \right|_{x=1/2} = -\frac{3}{2\sqrt{e}}$$

$$\frac{dy}{dx}\Big|_{x=1/2} = -\frac{3}{2\sqrt{e}}$$
when $x = \frac{1}{2}$, $y = f\left(\frac{1}{2}\right) = \frac{3}{2} - \frac{3}{2e}e^{1/2} = \frac{3}{2}\left(1 - \frac{1}{\sqrt{e}}\right)$

Length of subtangent =
$$\left| \frac{\frac{3}{2} \left(1 - \frac{1}{\sqrt{e}} \right)}{-\frac{3}{2\sqrt{e}}} \right| = \left| \sqrt{e} - 1 \right| = \sqrt{e} - 1$$

11.
$$\int_{0}^{1} f(x) dx = \int_{0}^{1} \left(\frac{3}{2} - \frac{3}{2e} e^{x} \right) dx = \frac{3x}{2} - \frac{3}{2e} e^{x} \Big|_{0}^{1} = \left(\frac{3}{2} - \frac{3e}{2e} \right) - \left(0 - \frac{3}{2e} \right)$$
$$= \left(\frac{3}{2} - \frac{3}{2} \right) + \frac{3}{2e} = \frac{3}{2e}$$

Paragraph for Question Nos. 12 to 13

12. $f_3'''(x) = f_0(x)$ see options or 3 times by parts.

13.
$$f_n(x) = \frac{x^n}{\lfloor n \rfloor} \left(\ln x - 1 - \frac{1}{2} - \frac{1}{3} \dots - \frac{1}{n} \right)$$

Paragraph for Question Nos. 14 to 15

Fig. f(x) in (1) (By aking limiting case)

$$f(x) = a\left(x - \frac{1}{2}\right)^2 + \frac{3}{4}$$

$$f(1) = 1$$
 $a = 1$
 $f(x) = x^2 - x + 1$

$$f(x) = x^2 - x + 1$$

15.
$$\int \frac{e^x}{e^{2x} - e^x + 1} e^x = t$$
Paragraph for Question Nos. 16 to 17

Paragraph for Question Nos. 16 to 17

17.
$$L = \lim_{x \to \infty} \frac{xe^{2x}(1+3x^2)^{1/2}}{C \cdot (xe^x)^{C-1} \cdot (e^x + xe^x)} = \lim_{x \to \infty} \frac{(xe^x)^2 \left(\frac{1}{x^2} + 3\right)^{1/2}}{C \cdot (xe^x)^C \cdot \left(\frac{1}{x} + 1\right)} = \text{Inegential definition}$$

Exercise-4: Matching Type Problems

2. (A)
$$\int \frac{dx}{(x^2+1)\sqrt{x^2+2}} = \int \frac{\frac{1}{x^3}dx}{\left(1+\frac{1}{x^2}\right)\sqrt{1+\frac{2}{x^2}}}$$
Let $1+\frac{2}{x^2}=t^2$

Let
$$1 + \frac{2}{x^2} = t^2$$

(C)
$$\int \frac{x^4 + x^8}{(1 - x^4)^{7/2}} = \int \frac{\left(x + \frac{1}{x^3}\right) dx}{\left(\frac{1}{x^2} - x^2\right)^{7/2}}$$
Let
$$\frac{1}{x^2} - x^2 = t^2$$

Let
$$\frac{1}{x^2} - x^2 = t^2$$

Indefinite and Definite Integration

(D) Let
$$\sqrt{x} = \cos 2\theta \implies dx = -2\sin 4\theta d\theta$$

$$\int \sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} dx = -2 \int \tan \theta \sin 4\theta d\theta$$

3. (A) Let $\sin x = t \implies \cos x \, dx = dt$

Let
$$\sin x = t \implies \cos x \, dx = dt$$

$$\int_{0}^{1} \frac{dt}{(1+t)(2+t)} = \int_{0}^{1} \left(\frac{1}{t+1} - \frac{1}{t+2}\right) dt = [\ln(1+t) - \ln(t+2)]_{0}^{1}$$

$$\lim_{t \to \infty} \frac{dt}{(1+t)(2+t)} = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1} |\cos x| \, dx = \lim_{t \to \infty} \frac{1}{(1+t)(2+t)} \int_{0}^{1$$

(B)
$$\int_{0}^{41\pi/4} |\cos x| \, dx = 10 \int_{0}^{\pi} |\cos x| \, dx + \int_{0}^{\pi/4} \cos x \, dx$$
$$= 10 \left[\int_{0}^{\pi/2} \cos x \, dx - \int_{\pi/2}^{\pi} \cos x \, dx \right] + \int_{0}^{\pi/4} \cos x \, dx$$

(C)
$$\int_{-1/2}^{0} [x] dx + \int_{0}^{1/2} [x] dx + \int_{-1/2}^{1/2} \ln\left(\frac{1+x}{1-x}\right) dx$$
$$= \int_{-1/2}^{0} -1 dx + \int_{0}^{1/2} 0 dx = -\frac{1}{2}$$

(D)
$$I = \int_{0}^{\pi/2} \frac{2\sqrt{\cos\theta}}{3(\sqrt{\cos\theta} + \sqrt{\sin\theta})} d\theta = \int_{0}^{\pi/2} \frac{2\sqrt{\sin\theta}}{3(\sqrt{\sin\theta} + \sqrt{\cos\theta})} d\theta$$
$$\Rightarrow 2I = \int_{0}^{\pi/2} \frac{2}{3} d\theta = \frac{\pi}{3}$$

The graph of
$$y=\sqrt{2}\sin\left(\frac{\pi}{4}+x\right)$$
 is obtained from the graph $\frac{\pi}{6}$ = I_{y} = \rightleftharpoons I_{z} since by

4. (A) Common root $\alpha = b - a \Rightarrow 3(b - a)^2 + a(b - a) + 1 = 0 \Rightarrow 2a^2 + 3b^2 - 5ab + 1 = 0$

(B)
$$\frac{x^4 + 1}{2x^2} = \sin^2 \frac{\pi x}{2} \Rightarrow \frac{x^2 + \frac{1}{x^2}}{2} = \sin^2 \frac{\pi x}{2} \Rightarrow x = \pm 1$$

(C)
$$y = \frac{1}{\frac{1}{(x-1)^2} + \frac{1}{x-1} - 2}$$
 $x \ne 1$; $\frac{1}{x-1} \ne -2, 1$
(D) $\int \left(\frac{x}{1+x}\right)^{7/6} \frac{dx}{x^2}$.

(D)
$$\int \left(\frac{x}{1+x}\right)^{7/6} \frac{dx}{x^2}.$$

128

Let
$$\frac{x+1}{x} = t^6 \Rightarrow -\frac{1}{x^2} dx = 6t^5 dt$$

$$I = 6 \int t^{-7} (-t^5) dt = \frac{6}{t} + C = 6 \left(\frac{x}{x+1} \right)^{1/6} + C$$

5. (A) We have,

We have,

$$\int_{0}^{1.5} [x^{2}] dx = \int_{0}^{1} [x^{2}] dx + \int_{1}^{1} [x^{2}] dx + \int_{\sqrt{2}}^{1.5} [x^{2}] dx$$

$$= \int_{0}^{1} 0 dx + \int_{1}^{\sqrt{2}} 1 \cdot dx + \int_{2}^{1.5} 2 \cdot dx = 0 + (\sqrt{2} - 1) + 2(1.5 - \sqrt{2}) = 2 - \sqrt{2}$$
We have

(B) We have,

$$\int_{0}^{4} {\{\sqrt{x}\} dx} = \int_{0}^{1} {\sqrt{x} dx} + \int_{1}^{4} {(\sqrt{x} - 1) dx} = \frac{2}{3} + \frac{2}{3} (8 - 1) - 3 = \frac{7}{3}$$

Aliter:
$$\int_{0}^{4} {\{\sqrt{x}\} dx} = \int_{0}^{4} \sqrt{x} dx - \int_{0}^{4} {[\sqrt{x}] dx}$$

(C) We have,

$$\sin x + \cos x = \sqrt{2} \sin \left(\frac{\pi}{4} + x\right)$$

$$\therefore \quad [\sin x + \cos x] = \left[\sqrt{2} \sin \left(\frac{\pi}{4} + x \right) \right]$$

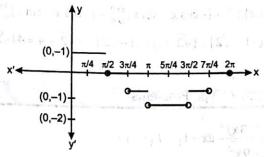
The graph of $y = \left[\sqrt{2} \sin \left(\frac{\pi}{4} + x \right) \right]$ is obtained from the graph of $y = \left[\sqrt{2} \sin x \right]$ by

translating it by $\frac{\pi}{4}$ units in the direction of OX'. The graph so obtained is shown in figure.

It is evident from the graph of $y = [\sqrt{2} \sin(x + \pi/4)]$ that $(1 \quad 0 < x \le \pi/2)$

$$f(x) = [\sin x + \cos x] = \begin{cases} 1, & 0 \le x \le \pi/2 \\ 0, & \pi/2 < x \le 3\pi/4 \\ -1, & 3\pi/4 < x \le \pi \\ -2, & \pi < x < 3\pi/2 \\ -1, & 3\pi/2 \le x < 7\pi/4 \\ 0, & 7\pi/4 \le x < 2\pi \end{cases}$$

Indefinite and Definite Integration



$$\int_{0}^{2\pi} [\sin x + \cos x] dx$$

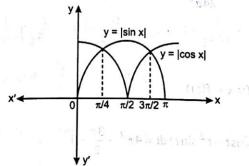
$$= \int_{0}^{\pi/2} 1 \cdot dx + \int_{\pi/2}^{3\pi/4} 0 dx + \int_{3\pi/4}^{\pi} (-1) dx + \int_{\pi}^{3\pi/2} (-2) dx + \int_{3\pi/2}^{7\pi/4} (-1) dx + \int_{7\pi/4}^{2\pi} 0 dx$$

$$= \frac{\pi}{2} + 0 - \frac{\pi}{4} - 2 \times \frac{\pi}{2} + (-1) \frac{\pi}{4} + 0 = -\pi$$

(D) We have,

We have,
$$\int_{0}^{\pi} ||\sin x| - |\cos x|| dx$$

$$= \int_{0}^{\pi/4} (|\sin x| - |\cos x|) dx + \int_{\pi/4}^{\pi/4} (|\sin x| - |\cos x|) dx + \int_{3\pi/4}^{\pi} -(|\sin x| - |\cos x|) dx$$



$$= -\int_{0}^{\pi/4} (\sin x - \cos x) \, dx + \int_{\pi/4}^{\pi/2} (\sin x - \cos x) \, dx + \int_{\pi/2}^{3\pi/4} (\sin x + \cos x) \, dx$$

$$+\int_{3\pi/4}^{\pi}-(\sin x+\cos x)\,dx$$

Solution of Advanced Problems in Mathematics for JEE

130

$$= -[-\cos x - \sin x]_0^{\pi/4} + [-\cos x - \sin x]_{\pi/4}^{\pi/2} + [-\cos x - \sin x]_{\pi/2}^{3\pi/4} - [-\cos x + \sin x]_{3\pi/4}^{\pi}$$

$$= -[-\sqrt{2} + 1] + [-1 + \sqrt{2}] + [\sqrt{2} - 1] - [1 - \sqrt{2}] = 4\sqrt{2} - 4 = 4(\sqrt{2} - 1)$$

Exercise-5: Subjective Type Problems

1.
$$\int \frac{x \, dx}{\sqrt{1 - 9x^2}} + \int \frac{(\cos^{-1} 3x)^2}{\sqrt{1 - 9x^2}} \, dx = I_1 + I_2$$

$$I_1 = \int \frac{x \, dx}{\sqrt{1 - 9x^2}}$$

$$I_1 = \int \frac{x \, dx}{\sqrt{1 - 9x^2}}$$

$$I_2 = \int \frac{(\cos^{-1} 3x)^2}{\sqrt{1 - 9x^2}} \, dx$$

Let
$$1-9x^2=t^2$$

Let
$$\cos^{-1} 3x = k$$

$$I_{1} = \int \frac{1}{\sqrt{1 - 9x^{2}}} dx$$
Let $1 - 9x^{2} = t^{2}$
Let $\cos^{-1} 3x = k$

$$I = \int_{0}^{\infty} \frac{x^{3} dx}{(a^{2} + x^{2})^{5}}$$

$$I = \int_{0}^{\pi} \frac{1}{(a^{2} + x^{2})^{5}}$$

$$I = \frac{1}{a^{6}} \int_{0}^{\pi/2} \sin^{3}\theta \cos^{5}\theta \, d\theta = \frac{1}{a^{6}} \int_{0}^{\pi/2} \cos^{3}\theta \sin^{5}\theta \, d\theta$$

(Let
$$x = a \tan \theta$$
)

$$2I = \frac{1}{8a^6} \int_{0}^{\pi/2} \sin^3 2\theta \, d\theta = \frac{1}{32a^6} \int_{0}^{\pi/2} (3\sin 2\theta - \sin 6\theta) \, d\theta$$

$$\Rightarrow I = \frac{1}{24a^6}$$

$$\Rightarrow I = \frac{1}{24a^4}$$

$$3. \int_{0}^{2\pi} g(x) dx$$

3.
$$\int_{0}^{2\pi} g(x) dx$$

$$\int_{3\pi/2}^{2\pi} t f'(t) dt \qquad (\because x = f(t))$$

$$= \int_{3\pi/2}^{2\pi} (t\cos t - t^2\sin t) dt = 4\pi^2 - \frac{3\pi}{2} - 1$$

4.
$$\int (x^5 + x^3 + x)\sqrt{2x^6 + 3x^4 + 6x^2} dx$$

Let
$$2x^6 + 3x^4 + 6x^2 = t^2 \Rightarrow 12(x^5 + x^3 + x) dx = 2t dt$$

$$= \frac{1}{12} \int 2t^2 dt = \frac{1}{18} (2x^6 + 3x^4 + 6x^2)^{3/2} + C$$

Indefinite and Definite Integration

5. Put
$$x = \sin \theta$$

6.
$$\int \frac{\tan x}{\tan^2 x + \tan x + 1} dx$$

Let
$$\tan x = t$$
, $\sec^2 x \, dx = dt$, $dx = \frac{dt}{1+t^2}$

$$\int \frac{t}{(1+t+t^2)} \cdot \frac{dt}{1+t^2} = \int \left(\frac{1}{1+t^2} - \frac{1}{1+t+t^2}\right) dt = \int \frac{dt}{1+t^2} - \int \frac{dt}{\left(t+\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}$$

$$= \tan^{-1}(t) - \frac{1}{\left(\frac{\sqrt{3}}{2}\right)} \tan^{-1}\left(\frac{2t+1}{\sqrt{3}}\right) + C$$

$$= \tan^{-1}(t) - \frac{1}{\left(\frac{\sqrt{3}}{2}\right)} \tan^{-1}\left(\frac{2t+1}{\sqrt{3}}\right) + C$$

$$= \tan^{-1}(\tan x) - \frac{2}{\sqrt{3}} \tan^{-1}\left(\frac{2\tan x + 1}{\sqrt{3}}\right) + C$$

7. Let
$$x^4 = t$$

$$\int_{0}^{1} \frac{1+t^{\frac{2010}{1+t}}}{(1+t)^{\frac{2012}{1+t}}} dt = \int_{0}^{1} \frac{1}{(1+t)^{\frac{2012}{1+t}}} dt + \int_{0}^{1} \frac{1}{t^{2} \left(1+\frac{1}{t}\right)^{\frac{2012}{1+t}}} dt = \frac{(1+t)^{-\frac{2011}{1+t}}}{-2011} \Big|_{0}^{1} + \frac{\left(1+\frac{1}{t}\right)^{-\frac{2011}{1+t}}}{2011} \Big|_{0}^{1}$$

$$\frac{-1}{2011} \left(\frac{1}{2^{2011}} - 1 \right) + \frac{1}{2011} \left(\frac{1}{2^{2011}} - 0 \right) = \frac{-1}{2011} \left(\frac{1}{2^{2011}} - 1 - \frac{1}{2^{2011}} \right) = \frac{1}{2011} = \frac{\lambda}{\mu}$$

8.
$$\int_{1}^{\sqrt{3}} (x^{2x^2}x + 2x^{2x^2} \cdot x \ln x) dx = \int_{1}^{\sqrt{3}} x^{2x^2} (x + 2x \ln x) dx$$

8.
$$\int_{1}^{\sqrt{3}} (x^{2x^2}x + 2x^{2x^2} \cdot x \ln x) dx = \int_{1}^{\sqrt{3}} x^{2x^2} (x + 2x \ln x) dx$$

$$\int_{1}^{\sqrt{3}} (x^{2x^2}x + 2x \ln x) dx \qquad \text{Let } x^{x^2} = t \Rightarrow x^2 \ln x = \ln t \; ; \; (2x \ln x + x) dx = \frac{dt}{t}$$

$$\int_{1}^{(\sqrt{3})^3} t^2 \cdot \frac{dt}{t} = \int_{1}^{(\sqrt{3})^3} t \, dt = \frac{t^2}{2} \Big|_{1}^{3^{3/2}} = \frac{3^3 - 1}{2} = 13$$

9.
$$\int \frac{dx}{(\cos x - \sin x)(1 + \sin x \cos x)} = 2\int \frac{(\cos x - \sin x) dx}{(\cos x - \sin x)^2 (2 + (\sin x + \cos x)^2 - 1)}$$
$$= 2\int \frac{(\cos x - \sin x) dx}{((\sin^2 x + \cos^2 x) - 2\sin x \cos x)(1 + (\sin x + \cos x)^2)}$$

$$=2\int \frac{(\cos x - \sin x) dx}{((\sin^2 x + \cos^2 x) - 2\sin x \cos x)(1 + (\sin x + \cos x)^2)}$$

132

$$= 2 \int \frac{(\cos x - \sin x) dx}{(2 - (\sin x + \cos x)^2)(1 + (\sin x + \cos x)^2)}$$

$$= 2 \int \frac{dt}{(2 - t^2)(1 + t^2)} \text{ where } t = \sin x + \cos x$$

$$= 2 \int \frac{dt}{(2 - t^2)(1 + t^2)} = \frac{2}{3} \left[\int \frac{1}{1 + t^2} dt + \int \frac{dt}{2 - t^2} \right]$$

$$= \frac{2}{3} \left[\tan^{-1}(t) + \frac{1}{2\sqrt{2}} \ln \left(\frac{\sqrt{2} + t}{\sqrt{2} - t} \right) \right] + C$$

$$\therefore A = \frac{2}{3}, B = \frac{1}{3\sqrt{2}}$$

$$\therefore 12A + 9\sqrt{2}B - 3 = 12 \cdot \frac{2}{3} + 9\sqrt{2} \cdot \frac{1}{3\sqrt{2}} - 3 = 8$$

$$12A + 9\sqrt{2}B - 3 = 12 \cdot \frac{2}{3} + 9\sqrt{2} \frac{1}{3\sqrt{2}} - 3 = 8$$

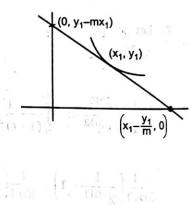
$$10. \quad x^{a} \cdot y = \lambda^{a}; \quad y = \frac{\lambda^{a}}{x^{a}}$$

$$\frac{dy}{dx} = -a\lambda^{a}x^{-a-1} = -a\frac{x^{a} \cdot y}{x^{a+1}}$$

$$\Rightarrow \qquad m = \frac{-ay_{1}}{|x_{1}|}$$

$$A = \frac{1}{2}|y_{1} - mx_{1}| \left|x_{1} - \frac{y_{1}}{m}\right| = \frac{1}{2}y_{1}x_{1}(1+a)^{2}$$

$$= \frac{1}{2}\lambda^{a} \cdot x_{1}^{1-a}(1+a)^{2}$$



For A to be constant 1-a=0

11.
$$I_{(6,8)} = \int_{0}^{\pi} x^{6} (\pi - x)^{8} dx = \left(-\frac{x^{6} (\pi - x)^{9}}{9}\right)_{0}^{\pi} + \int_{0}^{\pi} 6x^{5} \frac{(\pi - x)^{9}}{9} dx$$

$$I_{(6,8)} = \frac{6}{9} I_{(5,9)} = \frac{6}{9} \times \frac{5}{10} \times \frac{4}{11} \times \frac{3}{12} \times \frac{2}{13} \times \frac{1}{14} \int_{0}^{\pi} (\pi - x)^{14} dx = \frac{6! \times 8!}{15!} \pi^{15}$$

14.
$$I = \int_{0}^{100} \sqrt{x} \, dx - \left[\int_{0}^{1^{2}} 0 \cdot dx + \int_{1^{2}}^{2^{2}} dx + \dots + \int_{2^{2}}^{3^{2}} 2dx + \dots + \int_{9^{2}}^{10^{2}} 9 \, dx \right]$$

$$I = \frac{155}{3}$$

17.
$$f(\theta) = \int_{-1}^{1} \frac{\sin\theta \, dx}{(x - \cos\theta)^2 + \sin^2\theta} = \tan^{-1} \left(\frac{x - \cos\theta}{\sin\theta} \right) \Big|_{-1}^{1}$$

Clearly, $f(\theta)$ is not defined when $\sin \theta = 0$ $\theta = 0, \pi, 2\pi$

20.
$$f(x) = \frac{1}{2} \int_{0}^{x} (x-t)^{2} g(t) dt = \frac{1}{2} \left[x^{2} \int_{0}^{x} g(t) dt - 2x \int_{0}^{x} tg(t) dt + \int_{0}^{x} t^{2} g(t) dt \right]$$

$$f'(x) = \left[x \int_{0}^{x} g(t) dt - \int_{0}^{x} t g(t) dt \right]$$

$$f''(x) = \int_{0}^{x} g(t) dt$$

$$f'''(x) = g(x)$$

22.
$$f(2-x) = f(2+x)$$
, it means it symmetric about $x=2 \Rightarrow \int_{0}^{2} f(x) dx = \int_{2}^{4} f(x) dx = 5$

Let
$$2-x=t$$
; $f(t)=f(4-t)$ i.e., $f(x)=f(4-x)=f(4+x)$

$$\int_{0}^{50} f(x) dx = 25 \left(\int_{0}^{2} f(x) dx \right) = 25 \times 5 = 125$$

23.
$$I_n = \int_{-1}^{1} |x| \left(1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^{2n}}{2n} \right) dx = 2 \left[\int_{0}^{1} \left(x + \frac{x^3}{2} + \frac{x^5}{4} + \dots + \frac{x^{2n+1}}{2n} \right) dx \right]$$

$$= 2 \left[\frac{x^2}{1 \cdot 2} + \frac{x^4}{2 \cdot 4} + \frac{x^6}{4 \cdot 6} + \dots + \frac{x^{2n+1}}{2n \cdot (2n+2)} \right]_0^1$$
$$= 2 \left[\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 4} + \frac{1}{4 \cdot 6} + \dots + \frac{1}{2n \cdot (2n+2)} \right]$$

$$I_n = 1 + \frac{1}{2} \left(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} \right) = 1 + \frac{1}{2} \left(\frac{1}{1} - \frac{1}{n+1} \right)$$

$$\lim_{n \to \infty} I_n = 1 + \frac{1}{2} = \frac{3}{2} = \frac{p}{q}$$

$$pq(p+q) = 3 \times 2(5) = 30$$

$$pq(p+q) = 3 \times 2(5) = 30$$

25. $\int_{a}^{b} |\sin x| dx = 8 \implies b-a = 4\pi$

Solution of Advanced Problems in Mathematics for JEE

$$\int_{0}^{a+b} |\cos x| \, dx = 9 \quad \Rightarrow a+b = \frac{9\pi}{2} \Rightarrow a = \frac{\pi}{4}; b = \frac{17\pi}{4}$$

$$\frac{1}{\sqrt{2\pi}} \left| \int_{a}^{b} x \sin x \cdot dx \right| = \frac{1}{\sqrt{2\pi}} \left| \int_{\pi/4}^{17\pi/4} x \sin x \, dx \right| = 2$$

$$\sqrt{2\pi} \Big|_{a}^{3}$$

$$\sqrt{2\pi} \Big|_{\pi/4}^{3}$$

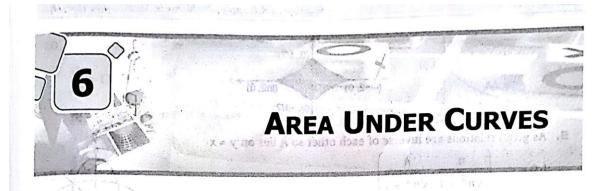
$$28. \quad f(x) = 0 \quad \Rightarrow \int_{0}^{x} e^{-y} f'(y) \, dy = x^{2} - x + 1$$

$$\Rightarrow e^{-x} f'(x) = 2x - 1 \quad \Rightarrow f(x) = (2x - 3)e^{x}$$

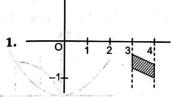
29.
$$I_n = 2 \int_0^{\pi} \left(\frac{\pi}{2} - |x| \right) \cos nx \, dx = 2 \left(\frac{1 - \cos n\pi}{n^2} \right)$$

$$I_1 + I_2 + I_3 + I_4 = 4 \left(1 + \frac{1}{9} \right) = \frac{40}{9}$$

Chapter 6 - Area Under Curve



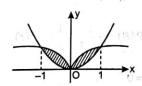
Exercise-1 : Single Choice Problems



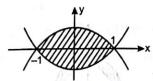
 $1 \le x + 3y < 2$

Area of shaded region = $\frac{1}{3}$

2. Area =
$$2\int_{0}^{1} (\sqrt{x} - x^{2}) dx$$



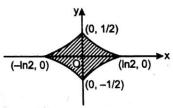
3.
$$y^2 = (x^2 - 1)^2 = 4 \int_0^1 (1 - x^2) dx = \frac{8}{3}$$



4. Area =
$$4 \int_{0}^{\ln 2} \left(e^{-x} - \frac{1}{2} \right) dx = 2 - 2 \ln 2$$

13

Solution of Advanced Problems in Mathematics for JEE

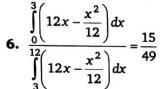


5. As given relations are inverse of each other so A lies on y = x

i.e.,
$$\left(\frac{n}{\sqrt{n^2+1}}, \frac{n}{\sqrt{n^2+1}}\right)$$

So, required area = 8 area (OACBO) = $8(\triangle OAB + area BACB)$

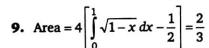
$$=8\left(\frac{1}{2}\left(\frac{n}{\sqrt{n^2+1}}\right)^2+\int_{n/\sqrt{n^2+1}}^{1}n\cdot\sqrt{1-x^2}\,dx\right)$$

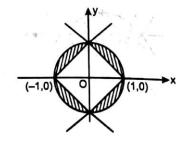


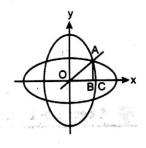
Normal at (1, 1) is $\Rightarrow y = -\frac{1}{r}(x-1) + 1$

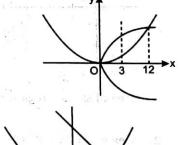
Required area = $\int_{0}^{1} x^{r} dx + \operatorname{ar}(\Delta PAB) = \frac{1}{r+1} + \frac{1}{2}r = f(r)$

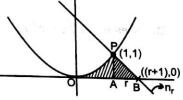
$$f'(r) = -\frac{1}{(r+1)^2} + \frac{1}{2} = 0$$









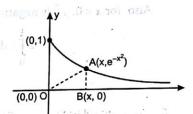


Area Under Curves

10. Area of $\triangle AOB = \frac{1}{2}xe^{-x^2}$

$$\frac{dA}{dx} = (1 - 2x^2)e^{-x^2}$$

Area is maximum at $x = \frac{1}{\sqrt{2}}$



12. $\int_{0}^{2} g(x) dx$

Let
$$x = f(t) \implies dx = f'(t) dt$$

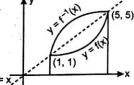
$$\int_{0}^{1} t(3t^{2} - 6t + 3) dt = \frac{1}{4}$$

13.
$$x^2y^2 + y^4 - x^2 - 5y^2 + 4 = 0$$

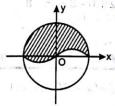
 $(x^2 + y^2 - 4)(y^2 - 1) = 0$

$$(x^2 + y^2 - 4)(y^2 - 1) = 0$$

14.



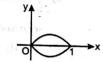
15. Ar. of shaded region = $\frac{1}{2}$ Ar. of circle = $\frac{\pi^3}{2}$.



16. We have,

For x > 1, y^2 is negative. Since the square of a real number cannot be negative, y does not exist at x = 0 or at x = 1; y = 0. Let $x = \frac{1}{2}$. Therefore, from Eq. (1), we get

$$y^{2} = \frac{1}{2} \left(1 - \frac{1}{8} \right) = \frac{7}{16}$$

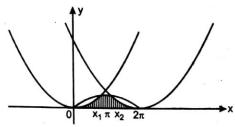


138

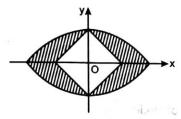
Also, for x < 0, y^2 is negative. Therefore, the required area is

$$2\int_{0}^{1} y \, dx = 2\int_{0}^{1} (+) \sqrt{x} \sqrt{1 - x^{3}} \, dx$$
$$= 2\int_{0}^{1} \sqrt{x - x^{4}} \, dx$$

17.



18. $|x| + |y| \ge 2$ and $\frac{x^2}{9} + \frac{y^2}{4} = 1$



Ar. of ellipse – Ar. of square = $\pi(2)(3) - 8 = 6\pi - 8$

Exercise-2: One or More than One Answer is/are Correct

1. (a) f(x) = -(x-a)(x-b)(x+c) = (x-a)(x)(x+c)Clearly option (a) is correct.

 $[\because b=0]$

- (b) $\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx > 0 \text{ (from graph)}$ which incorrect
- (c) $\int_{a}^{b} f(x) dx < 0 \& \int_{c}^{b} f(x) dx < 0$ but second term is large negative value so option (c) is incorrect.
- (d) Clearly, (d) is incorrect.

Area Under Curves

139

2.
$$T_n = \frac{1}{n} \sum_{r=2n}^{3n-1} \frac{(r/n)}{1 + (r/n)^2}, \quad S_n = \frac{1}{n} \sum_{r=2n+1}^{3n} \frac{(r/n)}{1 + (r/n)^2}$$

Let
$$f(x) = \frac{x}{1+x^2}$$

$$f'(x) = \frac{(1+x^2)-2x^2}{(1+x^2)^2} = \frac{1-x^2}{(1+x^2)^2}$$

f(x) is decreasing in (2, 3).

$$T_n > \int_2^3 f(x) \, dx, \quad S_n < \int_2^3 f(x) \, dx$$

$$a + b = 2$$

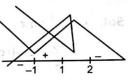
$$\int_0^4 (a\sqrt{x} + bx) \, dx = 8 \quad \Rightarrow \frac{2a}{3} + b = 1$$

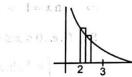
$$a+b=2$$

$$(a\sqrt{x} + bx) dx = 8 \qquad \Rightarrow \frac{2a}{3} + b = 1$$

4. Normal $y + x = \frac{7}{4}$

$$\int_{-3/2}^{1/2} \left(\frac{7}{4} - x \right) - (x^2 + 1) dx$$





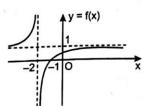
Exercise-3: Comprehension Type Problems

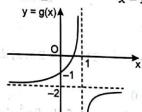
Paragraph for Question Nos. 1 to 3

Sol.
$$f(x) = \frac{x+a}{bx^2 + cx + 2}$$

$$f(-1) = 0 \implies a = 1$$

If
$$y = 1$$
 is asymptotes, then $b = 0$ and $c = 1 \Rightarrow f(x) = \frac{x+1}{x+2}$ and $g(x) = \frac{1-2x}{x-1}$





Exercise 5 Subjective Type Proble

Paragraph for Question Nos. 4 to 6

Sol. $y = e^{-x} \sin x$

$$\frac{dy}{dx} = e^{-x} [\cos x - \sin x] = 0$$

$$\Rightarrow \tan x = 1 \Rightarrow x = n\pi + \frac{\pi}{4}$$

So, $(i.e., 0 \le x \le \pi)$

$$I = \int e^{-x} \sin x \, dx = \frac{-e^{-x}}{2} [\sin x + \cos x] + c$$

$$S_{j} = \left| \int_{j\pi}^{(j+1)\pi} e^{-x} \sin x \, dx \right| = \left| -\frac{e^{-x}}{2} \left[\sin x + \cos x \right] \right|_{j\pi}^{(j+1)\pi} = \frac{e^{-j\pi}}{2} (e^{-\pi} + 1)$$

4. Put
$$j = 0$$
, $S_0 = \frac{1 + e^{-\pi}}{2}$

5.
$$\frac{S_{2009}}{S_{2010}} = \frac{e^{-2009\pi}}{e^{-2010\pi}} = e^{\pi}$$

6.
$$\frac{S_{j+1}}{S_j} = e^{-\pi}$$

$$\therefore \sum_{j=0}^{\infty} S_j = \frac{S_0}{1 - e^{-\pi}} = \frac{\frac{1 + e^{-\pi}}{2}}{1 - e^{-\pi}} = \frac{1 + e^{\pi}}{2(e^{\pi} - 1)}$$

Exercise-5 : Subjective Type Problems

1.
$$f(x) = x^2$$

$$A = 2\int_{0}^{1} (\sqrt{2-x^{2}} - x^{2}) dx = \frac{\pi}{2} + \frac{1}{3}$$

2.
$$f(x) = 2 \ln x$$

$$A = \int_{0}^{1} (-x^{3} + 6x^{2} - 11x + 6 - 2\ln x) dx = \frac{17}{4}$$

4. At
$$x = 0$$
, $y = 0$

$$x + 5y - y^5 = 0 \implies 1 + 5y' - 5y^4y' = 0$$

at
$$x = 0$$
, $y = 0$

$$y' = -\frac{1}{5}$$

Area Under Curves 141

Equation of tangent: $y = -\frac{x}{5}$, equation of normal: y = 5x

Area =
$$\frac{1}{2} \times 5 \times 26 = 65$$

5.
$$[x]^2 = [y]^2$$

$$\therefore [y] = \pm [x]$$

$$[y] = \pm 1,$$
 $1 \le x < 2$
 $= \pm 2,$ $2 \le x < 3$
 $= \pm 3,$ $3 \le x < 4$
 $= \pm 4,$ $4 \le x < 5$
 $= \pm 5,$ $x = 5$

Now, when, $x \in [1, 2)$

then
$$y \in [-1, 0) \cup [1, 2)$$

when
$$x \in [2,3]$$

then
$$y \in [-2, -1) \cup [2, 3)$$

when
$$x \in [3, 4)$$

then
$$y \in [-3, -2) \cup [3, 4)$$

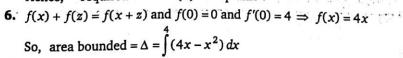
when
$$x \in [4,5)$$

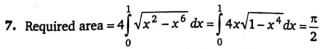
then
$$y \in [-4, -3) \cup [4, 5)$$

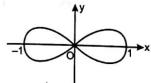
when
$$x=5$$

then
$$y \in [-5, -4) \cup [5, 6)$$

Hence, required area = 2(4) = 8 sq. unit



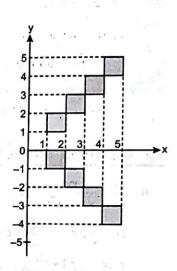


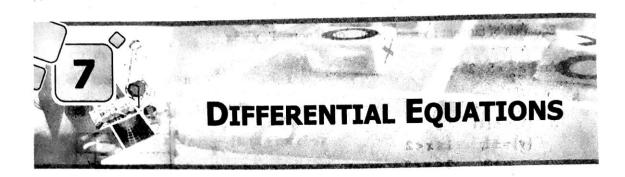


Put $x^2 = \sin \theta$

8. Ar =
$$4\int_{0}^{1} (1-x^{2/5}) dx = 4\left(x-\frac{5}{7}x^{7/5}\right)_{0}^{1} = \frac{8}{7}$$

Chapter 7 - Differential Equations





Exercise-1: Single Choice Problems

4.
$$\frac{dy}{dx} = \frac{xy}{x^2 + y^2}$$
Let $\frac{y}{x} = t \implies \frac{dy}{dx} = t + x \frac{dt}{dx}$

$$\int \frac{dx}{x} = -\int \frac{1 + t^2}{t^3} dt; \qquad \ln y = \frac{x^2}{2y^2} - \frac{1}{2} \qquad (\because y(1) = 1)$$

5.
$$\int \frac{y}{\sqrt{1-y^2}} dy = \int dx$$

$$-\sqrt{1-y^2} = x + c$$

$$\Rightarrow (x+c)^2 + y^2 = 1$$
(4) (4)

6.
$$\int \frac{dy}{y} = -\int \frac{dx}{(x-3)^2}$$
$$\Rightarrow \ln y = \frac{1}{x-3} + c$$

7. Let
$$f(x) = y$$

$$\frac{dy}{dx} - 2xy = \frac{e^{x^2}}{(x+1)^2}$$

8. Let
$$x^2y^2 = t$$

$$2xy^2 + 2x^2y \frac{dy}{dx} = \frac{dt}{dx}$$

$$\frac{dt}{dx} = \tan t$$

Differential Equation

143

9.
$$y = (C_1 \cos C_2) \cos x + (C_5 - C_1 \sin C_2) \sin x + C_3 e^{C_4} e^{-x}$$

 $y = A \cos x + B \sin x + C e^{-x}$

 C_1, C_2, C_3, C_4 are arbitrary constants.

10. $y = e^{(\alpha+1)x}$

$$y'=e^{(\alpha+1)x}(\alpha+1)$$

$$y'' = e^{(\alpha+1)x}(\alpha+1)^2$$

12.
$$\frac{dy}{dx} - \left(1 + \frac{f'(x)}{f(x)}\right)y = f(x)$$

$$I.F = e^{-\int \left(1 + \frac{f'(x)}{f(x)}\right) dx} = \frac{e^{-x}}{f(x)}$$

$$\frac{ye^{-x}}{f(x)} = \int e^{-x} dx + C \quad \Rightarrow \frac{ye^{-x}}{f(x)} = -e^{-x} + C$$

13. Equation of tangent at $\left(t, \frac{t^2}{2}\right)$ is

ent at
$$\left(t, \frac{t^2}{2}\right)$$
 is
$$y = tx - \frac{t^2}{2} \implies t = \frac{dy}{dx}$$

$$\left(\frac{dy}{dx}\right)^2 - 2x\frac{dy}{dx} + 2y = 0$$

Differential equation is
$$\left(\frac{dy}{dx}\right)^2 - 2x\frac{dy}{dx} + 2y = 0$$
14. Let $x + y = t \Rightarrow 1 + \frac{dy}{dx} = \frac{dt}{dx}$; $\frac{1}{t^3}\frac{dt}{dx} + \frac{x}{t^2} = x \Rightarrow \frac{e^{-x^2}}{(x+y)^2} = e^{-x^2} + C$

$$15. \ \frac{dy}{dx} - 2y \tan x = \tan^2 x$$

$$I.F. = e^{-2\int \tan x \, dx} = \cos^2 x$$

$$y\cos^2 x = \int \sin^2 x \, dx = \frac{1}{2} \int (1 - \cos 2x) \, dx$$

16.
$$f(x) = 2e^x + 1$$

17. Let
$$\frac{dy}{dx} = t$$
 then $\frac{d^2y}{dx^2} = \frac{dt}{dx}$

$$\frac{dt}{dx} = \frac{2tx}{x^2 + 1}$$

$$\Rightarrow t = \frac{dy}{dx} = 3(x^2 + 1)$$

$$(:: y'(0) = 3)$$

19 = A) = 101

Solution of Advanced Problems in Mathematics for JEE

 $\int_{-\infty}^{\infty} dx + C = \frac{1}{2A} = C = \frac{1}{2A}$

A.B. Repair in transactive that 2 is

$$\Rightarrow y = x^3 + 3x + 1$$

$$(\because y(0)=1)$$

18.
$$cv^2 = 2x + c$$

$$2cyy' = 2 \implies c = \frac{1}{yy'}$$

$$y^2 = 2x yy' + 1$$

19. Let
$$\csc y = t$$

$$\Rightarrow$$
 -cosec y cot y dy = dt

$$-\frac{dt}{dx} - \frac{t}{x} = -\frac{1}{x^2}$$

$$\Rightarrow \frac{t}{x} = \frac{1}{2x^2} + c \Rightarrow \frac{1}{x \sin y} = \frac{1}{2x^2} + c$$

20.
$$\frac{xdy - ydx}{x^2} = \frac{\sqrt{x^2 + y^2}}{x^2} dx$$

$$\int \frac{d\left(\frac{y}{x}\right)}{\sqrt{1+\left(\frac{y}{x}\right)^2}} = \int \frac{dx}{x}$$

21.
$$\lim_{t \to x} \frac{t^3 f(x) - x^3 f(t)}{t^2 - x^2} = \frac{1}{2} \implies 3x f(x) - x^2 f'(x) = 1$$

$$\implies \frac{dy}{dx} - \frac{3y}{x} = \frac{-1}{x^2} \implies y = \frac{1}{4x} + \frac{3}{4}x^2 \qquad (\because f(1) = 1)$$
22.
$$\frac{2dp(t)}{dt} = p(t) - 900$$

$$\Rightarrow \frac{dy}{dx} - \frac{3y}{x} = \frac{-1}{x^2} \Rightarrow y = \frac{1}{4x} + \frac{3}{4}x^2$$

$$(\because f(1) = 1$$

 $\frac{1}{\sqrt{1}}$ $\frac{1}{\sqrt{1}}$ $\frac{1}{\sqrt{1}}$ $\frac{1}{\sqrt{1}}$ $\frac{1}{\sqrt{1}}$ $\frac{1}{\sqrt{1}}$

22.
$$\frac{2dp(t)}{dt} = p(t) - 900$$

$$2\int \frac{dp(t)}{p(t)-900} = \int dt$$

$$2\ln|900-p(t)|=t+c$$

$$p(t) = 900 - 50e^{t/2}$$

$$(:p(0) = 850)$$

$$p(t) = 0 \implies t = 2 \ln 18$$

23.
$$\frac{\sin y}{\cos^2 y} \frac{dy}{dx} + \frac{\tan x}{\cos y} = \sec x$$

Let
$$\frac{1}{\cos y} = t \implies \frac{\sin y}{\cos^2 y} dy = dt$$

$$\frac{dt}{dx} + t \cdot \tan x = \sec x$$

$$t \cdot \sec x = \int \sec^2 x \cdot dx + C$$

$$\sec y \cdot \sec x = \tan x + C$$

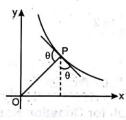
24.
$$\frac{dy}{dx} = (4x + y + 1)^2$$

Let
$$4x + y + 1 = t$$

$$4 + \frac{dy}{dx} = \frac{dt}{dx} \Rightarrow \frac{dt}{dx} = t^2 + 4$$

$$\frac{1}{2}\tan^{-1}\left(\frac{t}{2}\right) = x + C$$

25.
$$\tan \theta = \left| \frac{\frac{dy}{dx} - \frac{y}{x}}{1 + \frac{y}{x} \cdot \frac{dy}{dx}} \right| = -\frac{dx}{dy}$$



$$\Rightarrow \left(\frac{dy}{dx}\right)^2 - \frac{2y}{x}\frac{dy}{dx} = 1$$

26. I.F. =
$$e^{\int \frac{1}{x} dx} = e^{\ln x} = x$$

$$y \cdot x = \int x^3 dx = \frac{x^4}{4} + c$$

27.
$$x^3 dy + 3x^2 y dx = y^2 dx + 2xy dy$$

$$d(x^3y) = d(xy^2)$$

$$\int d(x^3y) = \int d(xy^2) \Rightarrow x^3y = xy^2$$

Exercise-2 : One or More than One Answer is/are Correct

1.
$$\frac{xdy - ydx}{x^2} = \frac{x^2 - 2}{x^2} dx$$

$$\int d\left(\frac{y}{x}\right) = \int \left(1 - \frac{2}{x^2}\right) dx$$

$$y = x^2 - 2x + 2$$

$$(\because f(1) = 1)$$

Solution of Advanced Problems in Mathematics for JEE

2. I.F. =
$$x \sec x$$
; $yx \sec x = \tan x + c$

3. Put
$$y = h$$

$$\Rightarrow x[f(x+h) - f(x-h)] - h[f(x+h) + f(x-h)] = 2(x^2h - h^3)$$

or
$$\lim_{h\to 0} x \frac{[f(x+h)-f(x-h)]}{h} - [f(x+h)+f(x-h)] = \lim_{h\to 0} 2(x^2-h^2)$$

$$\Rightarrow xf'(x) - f(x) = x^2 \Rightarrow f(x) = x^2 + x$$

4. L.D.E., I.F. =
$$1 + \sin^2 x$$
; $(1 + \sin^2 x) f = \sin x + C$, $C = 0$

5.
$$2ydx + 2xdy + (2x^2y^{3/2}dx + x^3y^{1/2}dy) = 0$$

$$2d(xy) + \frac{2}{3}d(x^3 \times y^{3/2}) = 0$$

6. I.F. =
$$\frac{1}{\sin^3 x}$$
; $\frac{y}{\sin^3 x} = \int \frac{\sin 2x}{\sin^3 x} dx$; $\frac{y}{\sin^3 x} = 2 \int \cot x \cdot \csc x dx = -2 \csc x + c$

$$y = -2\sin^2 x + 4\sin^3 x \ \left(\because y\left(\frac{\pi}{2}\right) = 2\right)$$

Exercise-3 : Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

Sol.
$$x \int_{0}^{x} g(t) dt + \int_{0}^{x} (1-t)g(t) dt = x^{4} + x^{2}$$

differentiate w.r.t. 'x'

$$x g(x) + \int_{0}^{x} g(t) dt + (1-x) g(x) = 4x^{3} + 2x \qquad ...(1)$$

1. From (1)

$$\int_{0}^{x} g(t) dt + g(x) = 4x^{3} + 2x$$

Let
$$g(x) + g'(x) = 12x^2 + 2 \implies \frac{dy}{dx} + y = 12x^2 + 2$$
 (: $y = g(x)$)

2. Put x = 0 in (1) we get g(0) = 0

Paragraph for Question Nos. 3 to 5

3.
$$f(g(x)) = e^{-2x}$$

$$\frac{x \cdot [f(g(x))]'}{f(g(x))} = \frac{[g(f(x))]'}{g[f(x)]}$$

146

Differential Equation

$$\Rightarrow$$
 $g(f(x)) = e^{-x^2}$

$$H(x) = e^{-(x-1)^2 + 1}$$

4.
$$f(g(0)) + g(f(0)) = 2$$

5.
$$H(x)_{\text{max}} = e$$

Paragraph for Question Nos. 6 to 8

Sol.
$$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = \lim_{h \to 0} \frac{e^x g(h)}{h} + \lim_{h \to 0} g(x) \left(\frac{e^h - 1}{h}\right)$$

$$(: g'(0) = 2)$$

$$=2e^x+g(x)$$

$$\frac{dy}{dx} - y = 2e^x \implies y = 2xe^x + ce^x$$

$$\Rightarrow y = 2xe^x$$

$$(\because g(0) = 0)$$

Exercise-4: Matching Type Problems

1. (A)
$$y \frac{dx}{dy} - x = y^2 \frac{dx}{dy} + 1 \Rightarrow (y^2 - y) \frac{dx}{dy} = -(1 + x) \Rightarrow \frac{dx}{1 + x} = -\frac{dy}{y(y - 1)}$$

(B)
$$y \frac{dx}{dy} + 2x = 10y^3 \Rightarrow \frac{dx}{dy} + \left(\frac{2}{y}\right)x = 10y^2$$

I.E.
$$= e^{\int \frac{2}{y} dy = e^{2\ln y} = y^2}$$

 $d(xy^2) = 10y^4$

(C)
$$\frac{dy}{dx} = y'$$

$$y'y''' = (3y'')^2$$

$$\frac{y'''}{y''} = \frac{3y''}{y'}$$
 then integrate it.

(D) Put
$$x^2 = t$$

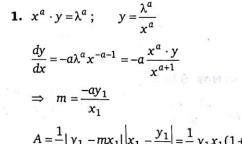
$$\frac{dt}{dy} + \frac{t}{y} = \frac{1}{y^3}$$

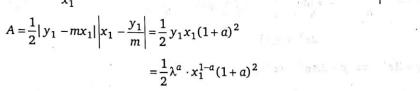
then solve it.

147

6

Exercise-5: Subjective Type Problems





For A to be constant 1-a=0.

2.
$$\frac{dy}{dx} = xy(1+y)$$

$$\int \frac{dy}{(1+y)y} = \int x \, dx$$

$$\frac{2y}{1+y} = e^{\frac{x^2}{2}} \qquad (\because f(0) = 1)$$

$$\Rightarrow f(2) = \frac{e^2}{2 - e^2}$$

$$2 - e^{-x}$$
3. $y^2 = \cos^2 x + 2$

$$2y \frac{dy}{dx} = -\sin 2x$$

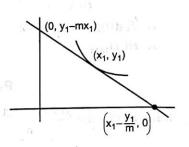
$$y \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = -\cos 2x$$

$$y^4 + y^3 \frac{d^2y}{dx^2} = (\cos^2 x + 2)^2 + (\cos^2 x + 2) \left[-\left(\frac{dy}{dx}\right)^2 - \cos 2x \right] = 6$$

4.
$$\lim_{t \to x+1} \frac{t^2 f(x+1) - (x+1)^2 f(t)}{f(t) - f(x+1)} = 1$$

$$\Rightarrow \lim_{t \to x+1} \frac{2t f(x+1) - (x+1)^2 f'(t)}{f'(t)} = 1$$

$$\Rightarrow [x+1][2f(x+1) - (x+1)f'(x+1)] = f'(x+1)$$



Differential Equation

149

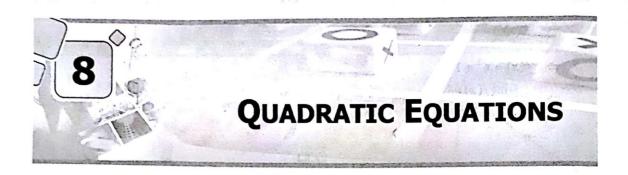
$$\Rightarrow f'(x) = \frac{2xf(x)}{x^2 + 1}$$

$$\Rightarrow f(x) = x^2 + 1$$

$$\Rightarrow \lim_{x \to 1} \frac{\ln(f(x)) - \ln 2}{x - 1} = \lim_{x \to 1} \frac{f'(x)}{f(x)} = 1$$

$$\Rightarrow \sum_{x \to 1} \frac{\ln(f(x)) - \ln 2}{x - 1} = \lim_{x \to 1} \frac{f'(x)}{f(x)} = 1$$

Chapter 8 - Quadratic Equations

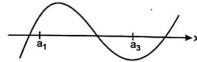


Exercise-1: Single Choice Problems

1. Let
$$3^{x/2} = a$$
, $2^y = b$
 $a^2 - b^2 = 77$, $a - b = 7 \Rightarrow a = 3^{x/2} = 9 \Rightarrow x = 4$
 $b = 2^y = 2 \Rightarrow y = 1$

2.
$$f(x) = \prod_{i=1}^{3} (x - a_i) + \sum_{i=1}^{3} a_i - 3x = (x - a_1)(x - a_2)(x - a_3) + (a_1 + a_2 + a_3) - 3x$$

 $f(a_1) = a_2 + a_3 - 2a_1 > 0$ $(a_1 < a_2 < a_3)$
 $f(a_3) = a_1 + a_2 - 2a_3 < 0$



3.
$$x^4 - 2ax^2 + x + a^2 - a = 0$$

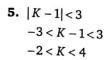
 $a^2 - a(2x^2 + 1) + x^4 + x = 0$
 $a = \frac{2x^2 + 1 \pm (2x - 1)}{2}$
 $a = x^2 + x$, $a = x^2 - x + 1$
 $a \ge -\frac{1}{4}$, $a \ge \frac{3}{4}$ (: $x \in R$)

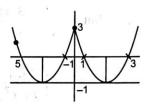
4.
$$x^3 - 3x^2 - 4x + 12 = 0$$

Equation whose roots are $\alpha - 3, \beta - 3, \gamma - 3$ is $(x+3)^3 - 3(x+3)^2 - 4(x+3) + 12 = 0$

$$f(x) = x^3 + 6x^2 + 5x = 0$$
 $\rightleftharpoons_{\beta=3}^{\alpha-3}$

Quadratic Equations





6.
$$\frac{x}{x+6} - \frac{1}{x} \le 0 \implies \frac{x^2 - x - 6}{x(x+6)} \le 0 \implies \frac{(x-3)(x+2)}{x(x+6)} \le 0$$

$$x \in (-6, -2] \cup (0, 3]$$

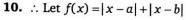
7.
$$P(x) = x^4 - 8x^2 + 15 + 2x^3 - 6x = (x^2 - 3)(x^2 - 5) + 2x(x^2 - 3)$$

= $(x^2 - 3)(x^2 + 2x - 5)$

$$Q(x) = (x+2)(x^2+2x-5)$$

8.
$$a = 1, h = \frac{\lambda}{2}, b = 1, g = \frac{-5}{2}, f = \frac{-7}{2}, c = 6$$

$$\begin{vmatrix}
1 & \lambda/2 & -5/2 \\
\lambda/2 & 1 & -7/2 \\
-5/2 & -7/2 & 6
\end{vmatrix} = 0 \implies \lambda = \frac{5}{2}, \frac{10}{3}$$



Suppose a > b

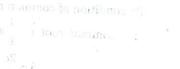
$$f(0) = f(1) = f(-1)$$

$$f(x) = \text{const. in } [b, a]$$

So,
$$b \le -1 < a \le 1$$

 $a - b \le 2$

$$\therefore \quad \text{Minimum} |a-b| = 2$$



12.
$$y = \frac{x^2 + 2x + c}{x^2 + 4x + 3c}$$
 $\Rightarrow (y - 1)x^2 + 2(2y - 1)x + (3cy - c) = 0$ $(D \ge 0)$

 $D \ge 0 \ \forall \ y \in R \text{ and } D \le 0$

But at c = 0 and 1 there will be common factors among numerator and denominator.

$$\Rightarrow$$
 $c(c-1)<0$

13.
$$f(t) = t^2 - mt + 2 = 0$$

$$\Rightarrow$$
 4-2m+2<0 \Rightarrow m>3

But
$$\frac{3|x|}{9+|x|^2} = \frac{3}{\frac{9}{|x|}+|x|} \le \frac{3}{6}$$
 (by A.M. G.M. in equality)
$$\left(\frac{3|x|}{9+x^2}\right)^m \le \frac{1}{2^m} < 1$$
 [: $m > 3$]
So,
$$\left[\left(\frac{3|x|}{9+x^2}\right)^m\right] = 0$$

14.
$$x^2(x^6 - 24x^5 - 18x^3 + 39) = -3 \times 5 \times 7 \times 11$$

If 'x' is integer, then there is no value of 'x'.

$$m^4 + \frac{1}{m^4} = 119$$

$$\Rightarrow m^2 + \frac{1}{m^2} = 11$$

$$\Rightarrow \left(m - \frac{1}{m}\right)^2 = 9$$

$$\left|m^3 - \frac{1}{m^3}\right| = \left|\left(m - \frac{1}{m}\right)\left(m^2 + \frac{1}{m^2} + 1\right)\right| = |3 \times 12| = 36$$

16.
$$ax^2 + 2bx + c = 0 < \frac{\alpha}{\beta}$$

$$ax^2 + 2cx + b = 0$$

By condition of common root

$$\Rightarrow$$
 Common root $\alpha = \frac{1}{2}$ and $\frac{a}{4} + b + c = 0$

$$\beta = \frac{2c}{a} \text{ and } \gamma = \frac{2b}{a}$$

Equation whose roots are β and γ is

$$x^{2} - \left(\frac{2c}{a} + \frac{2b}{a}\right)x + \frac{4bc}{a^{2}} = 0$$

$$2a^{2}x^{2} + a^{2}x + 8bc = 0$$

$$\left(\frac{a}{4} + b + c = 0\right)$$

17.
$$9x^{2}(x-1) - 1(x-1) = 0$$

$$x = 1, x = \frac{1}{3}, -\frac{1}{3}$$

$$\cos \alpha = 1, \cos \beta = \frac{1}{3}, \cos \gamma = -\frac{1}{3}$$

Quadratic Equations

 $\alpha = 0, \beta + \gamma = \pi$ $\therefore (\Sigma \alpha, \Sigma \cos \alpha) = (\pi, 1) = \text{centre}$ $\left[2\sin^{-1}\left(\tan\frac{\pi}{4}\right), 4\right] = \left[2\left(\frac{\pi}{2}\right), 4\right] = (\pi, 4) \to \text{point lies on the circle.}$

:. Radius is 3.

18.
$$y = \frac{11x^2 - 12x - 6}{x^2 + 4x + 2}$$

 $(y - 11) x^2 + (4y + 12) x + (2y + 6) = 0 \ \forall \ x \in R$

$$D \ge 0$$

$$(4y+12)^2 - 4(y-11)(2y+6) \ge 0$$

$$y^2 + 20y + 51 \ge 0$$

$$(y+17)(y+3) \ge 0$$

$$y \in (-\infty, -17] \cup [-3, \infty)$$

19.
$$\frac{x+3}{x^2-x-2} - \frac{1}{x-4} \ge 0$$
$$\frac{(x^2-x-12) - (x^2-x-2)}{(x^2-x-2)(x-4)} \ge 0$$
$$\frac{-10}{(x-2)(x+1)(x-4)} \ge 0$$

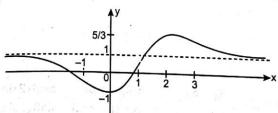
$$\Rightarrow (x+1)(x-2)(x-4)<0$$

$$x \in (-\infty, -1) \cup (2, 4)$$

20.
$$x = 4 + 3i$$

 $(x-4)^2 = -9 \implies x^2 - 8x + 25 = 0$
 $x^3 - 4x^2 - 7x + 12 = (x^2 - 8x + 25)(x + 4) - 88 = -88$

21.
$$f(x) = \frac{x^2 + x - 1}{x^2 - x + 1}$$



By graph : Min. = f(0); Max. = f(2)

If
$$x \in [-1, 3]$$
; $y_{\text{max.}} = \frac{5}{3}$

153

22. By graph min. =
$$f(0)$$
; max. = $f(1)$

if
$$x \in [-1, 1]$$
; $y \in [-1, 1]$

23.
$$\frac{1}{x+p} + \frac{1}{x+q} = \frac{1}{r}$$

$$x^{2} + x(p+q-2r) + pq - r(p+q) = 0$$

If one root is α . Then other root must be $-\alpha$.

$$p+q-2r=0 \Rightarrow r=\frac{p+q}{2}$$

Product of the roots = $pq - r(p + q) = pq - \frac{(p+q)^2}{2} = -\frac{(p^2 + q^2)}{2}$

24. If
$$a_1 x^2 + b_1 x + c_1 = 0$$
 has one root α .

$$\Rightarrow a_2x^2 + b_2x + c_2 = 0$$
 has one root $\frac{1}{\alpha}$.

$$\Rightarrow$$
 $c_2x^2 + b_2x + a_2 = 0$ has one root α

Condition of common root is

$$(a_1a_2-c_1c_2)^2=(a_1b_2-b_1c_2)(a_2b_1-b_2c_1)$$

25. If
$$\alpha^2 - 5\alpha + 3 = 0$$
 and $\beta^2 - 5\beta + 3 = 0$

$$\Rightarrow$$
 $x^2 - 5x + 3 = 0$ has two roots α and β .

$$\Rightarrow \alpha + \beta = 5, \alpha\beta = 3$$

Sum of the roots
$$=\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta} = \frac{19}{3}$$

Product of roots
$$=\frac{\alpha}{\beta} \times \frac{\beta}{\alpha} = 1$$

Equation whose roots are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ is $3x^2 - 19x + 3 = 0$

26.
$$|\alpha - \beta| = |\alpha_1 - \beta_1|$$

$$a^2 - 4b = b^2 - 4a$$

$$a^2 - b^2 = 4(b-a)$$

$$(a-b)(a+b+4)=0$$

$$a \neq b \Rightarrow a + b + 4 = 0$$

27.
$$\tan(\theta_1 + \theta_2 + \theta_3 + \theta_4) = \frac{S_1 - S_3}{1 - S_2 + S_4} = \frac{\sin 2\beta - \cos \beta}{1 - \cos 2\beta - \sin \beta} = \frac{\cos \beta (2\sin \beta - 1)}{\sin \beta (2\sin \beta - 1)} = \cot \beta$$

28.
$$(a^2 + b^2)x^2 + 2x(bd + ac) + (c^2 + d^2) = 0$$

$$(a^2x^2 + 2acx + c^2) + (b^2x^2 + 2bdx + d^2) = 0$$

Quadratic Equations

$$(ax+c)^2+(bx+d)^2>0$$

 \Rightarrow This equation has imaginary roots.

29. If α , β are roots of $ax^2 + bx + c = 0$

$$\Rightarrow \alpha + 2, \beta + 2$$
 are roots of $a(x-2)^2 + b(x-2) + c = 0$

$$\Rightarrow ax^2 + x(b-4a) + 4a - 2b + c = 0$$

30.
$$\alpha + \beta = 1 + \lambda$$
$$\alpha\beta = \lambda - 2$$

$$\alpha + \beta - \alpha \beta = 3$$

$$(\alpha-1)(\beta-1)=-2$$

⇒ atleast one root is positive.

31.
$$D \ge 0 \Rightarrow 3k^2 + 8k - 16 \le 0 \Rightarrow -4 \le k \le \frac{4}{3}$$

$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = k^2 - 2(k^2 + 2k - 4) = -k^2 - 4k + 8 = 12 - (k + 2)^2$$

32.
$$P(x) = (x-2)Q_1(x) + R(x)$$

$$Q(x) = (x-2)Q_2(x) + R(x)$$

$$\Rightarrow P(2) = Q(2)$$

33.
$$a + b = -a$$
 and $ab = b$

if
$$b \neq 0$$
, $a = 1$ and $b = -2$

$$x^{2} + ax + b = x^{2} + x - 2 = \left(x + \frac{1}{2}\right)^{2} - \frac{9}{4}$$

34.
$$x^2 + \left(\frac{b}{a}\right)\left(\frac{c}{a}\right)x + \left(\frac{c}{a}\right)^3 = 0$$

$$x^{2} - (\alpha + \beta) \cdot \alpha \beta x + \alpha^{3} \beta^{3} = 0$$

35.
$$x^2 + 2(a+b+c)x + 6k(ab+bc+ca) = 0$$

$$\Rightarrow 4(a+b+c)^2-24k(ab+bc+ca)\geq 0$$

$$\Rightarrow k \le \frac{1}{6} \left(\frac{a^2 + b^2 + c^2}{ab + bc + ca} + 2 \right)$$

also,
$$|a-b| < c, |b-c| < a, |c-a| < b$$

$$\Rightarrow a^2 + b^2 + c^2 - 2(ab + bc + ca) < 0$$

$$\Rightarrow \frac{a^2 + b^2 + c^2}{ab + bc + ca} < 2 \Rightarrow k < \frac{2}{3}$$

155

17. Differ that 'I void is tame in both countion

39. 4p(q =)x2 - 2q: - p)x - r(p - p = 0 -

156

36.
$$9|x|^2 - 18|x| + 5 = 0$$

 $\Rightarrow (3|x| - 1)(3|x| - 5) = 0$
 $\Rightarrow x = \pm \frac{1}{3}, \pm \frac{5}{3}$

and $x^2 - x - 2 > 0 \implies (x - 2)(x + 1) > 0 \implies x < -1 \text{ or } x > 2$

37. Difference of roots is same in both equation

$$b^2-c=B^2-C$$

38.
$$|x-p|+|x-15|+|x-p-15|=(x-p)-(x-15)-(x-P-15)=30-x$$

min. = 15

39.
$$4p(q-r)x^2 - 2q(r-p)x + r(p-q) = 0$$
 $\Rightarrow \alpha = -1/2$ $\Rightarrow \beta = -1/2$

If $x = -\frac{1}{2}$ is also the root of $4x^2 - 2x - m = 0$

$$\Rightarrow m=2$$

40. Let $\cos x = t$

$$\Rightarrow t \in [-1, 1]$$

$$\Rightarrow kt^2 - kt + 1 \ge 0 \ \forall \ t \in [-1, 1]$$

Case I: $k \ge 0$

x coordinate of vertex is $\frac{1}{2}$.

$$\Rightarrow f\left(\frac{1}{2}\right) \ge 0$$

$$\Rightarrow \frac{k}{4} - \frac{k}{2} + 1 \ge 0$$

$$\Rightarrow k \leq 4$$

Also,
$$k \ge 0$$

$$\Rightarrow k \in [0, 4]$$

Case II: k < 0

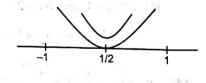
$$\Rightarrow f(1) \ge 0 \quad \text{and} \quad f(-1) \ge 0$$

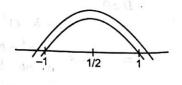
$$k - k + 1 \ge 0 \quad \text{and} \quad k + k + 1 \ge 0$$

$$\Rightarrow \qquad 1 \ge 0 \quad \text{and} \quad k \ge -\frac{1}{2}$$

Also, k < 0

$$\Rightarrow k \in \left[-\frac{1}{2}, 0\right) \Rightarrow k \in \left[-\frac{1}{2}, 4\right]$$





Quadratic Equations

157

41.
$$\frac{1+x}{1-x} = y \implies x = \frac{y-1}{y+1}$$

$$H(y) = 3\left(\frac{y-1}{y+1}\right)^3 - 2\left(\frac{y-1}{y+1}\right) + 5 = 0$$

$$H(y) = 3(y-1)^3 - 2(y-1)(y+1)^2 + 5(y+1)^3 = 0$$

$$H(y) = 3(y^3 - 3y^2 + 3y - 1) - 2(y - 1)(y^2 + 2y + 1) + 5(y^3 + 3y^2 + 3y + 1) = 0$$

1 12 1 2x 0 12x 2x 1 1 2x 0 12x 1

$$H(y) = 3(y^3 - 3y^2 + 3y - 1) - 2(y^3 + y^2 - y - 1) + 5(y^3 + 3y^2 + 3y + 1) = 0$$

$$H(y) = 3y^3 + 2y^2 + 13y + 2 = 0$$

$$H'(x) = 9x^2 + 4x + 13 \implies D < 0$$

$$H(x) > 0 \forall x > 0$$

Hence, it has one -ve real root.

42.
$$(\lambda^2 + \lambda - 2) x^2 + (\lambda + 2) x - 1 < 0 \forall x \in R$$

$$\lambda^2 + \lambda - 2 < 0 \cap (\lambda + 2)^2 + 4(\lambda^2 + \lambda - 2) < 0$$

$$(\lambda + 2)(\lambda - 1) < 0 \cap 5\lambda^2 + 8\lambda - 4 < 0$$

$$\lambda \in (-2,1) \cap \lambda \in \left(-2,\frac{2}{5}\right)$$

$$\Rightarrow \lambda \in \left(-2, \frac{2}{5}\right)$$

 $\lambda = -2$ is also the solution of this equation.

43.
$$\alpha = 1, \beta = 1, \gamma = 1, \delta = 1$$
 (as) $(\alpha - 1)^2 + (\beta - 1)^2 + (\gamma - 1)^2 + (\delta - 1)^2 = 0$

.. The roots of given equation is equal to 1.

$$\therefore S_2 = \frac{a_2}{a_0} = 6$$

44.
$$|x-1|+|x-2|+|x-3| \ge 6$$
 $0 \le (8-x) ||x|| \le 1$

Case I:

$$x \ge 3$$

$$3x - 6 \ge 6 \implies x \ge 4$$

Case II:

$$x \ge 6$$
 (Not possible)

(Not possible)

Case III:

$$1 \le x \le 2$$

$$4-x\geq 6$$

⇒

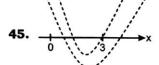
$$x \le -2$$

Case IV: x < 1

 $6 - 3x \ge 6$
 $x \le 0$

$$x \in (-\infty, 0] \cup [4, \infty)$$

Solution of Advanced Problems in Mathematics for JEE



00 3 ×

Case-I: $f(0) > 0 \cap f(3) \le 0$

Case-II: $f(3) > 0 \cap f(0) \le 0$

46.
$$x^3 + 3px^2 + 3qx + r = 0$$

$$\frac{2}{\beta} = \frac{1}{\alpha} + \frac{1}{\gamma} \dots \qquad (\because \alpha, \beta, \gamma \text{ are in H.P.})$$

$$\Rightarrow \frac{3}{\beta} = \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha\beta + \beta\gamma + \alpha\gamma}{\alpha\beta\gamma}$$

$$\Rightarrow \beta = -\frac{r}{\alpha} \qquad \text{which satisfy the given equation.}$$

47.
$$4y^2 + 4xy + (x+6) = 0 \ \forall \ y \in R$$

 $D \ge 0 \implies x^2 - x - 6 \ge 0$

48.
$$\log_{\cos x^2}(3-2x) < \log_{\cos x^2}(2x-1)$$

 $0 < \cos x^2 < 1 \cap 3 - 2x > 2x - 1 \cap 3 - 2x > 0 \cap 2x - 1 > 0$
 $x < 1$ $x < 3/2$ $x > 1/2$

49.
$$px^2 + qx + r = 0$$

$$\Rightarrow \alpha\beta < 0$$

$$\alpha(x-\beta)^2 + \beta(x-\alpha)^2 = (\alpha+\beta)x^2 - 4\alpha\beta x + \alpha\beta(\alpha+\beta) = 0$$
Product of roots = $\alpha\beta < 0$

$$D = 16\alpha^2\beta^2 - 4\alpha\beta(\alpha+\beta)^2 = -4\alpha\beta(\alpha-\beta)^2 > 0$$

50.
$$x^3 + 2x^2 - 4x - 4 = 0$$
 b

$$c$$

$$4x^3 + 4x^2 - 2x - 1 = 0$$

$$q=1, r=-\frac{1}{2}, s=-\frac{1}{4}$$

51.
$$\log_2(x^2 + 3x) \le 2$$

 $0 < x^2 + 3x \le 4$

Quadratic Equations

159

52.
$$k-2>0 \cap D<0$$

 $k>2 \cap (k+6)(k-4)>0$
 $\Rightarrow k>4$

53.
$$\alpha \beta < 0$$

$$\frac{3m - 8}{m - 2} < 0 \implies 2 < m < \frac{8}{3}$$

54.
$$\log_6 \left(\frac{x^2 + x}{x + 4} \right) > 1$$

$$\frac{x^2 + x}{x + 4} > 6 \implies \frac{x^2 - 5x - 24}{x + 4} > 0 \implies \frac{(x - 8)(x + 3)}{x + 4} > 0$$

55.
$$ax^2 + c = 0$$

$$\alpha + \beta = 0, \quad \alpha\beta = \frac{c}{a}$$

$$\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta) = 0$$

56.
$$(k-1)x^2 - (k+1)x + (k+1) > 0 \ \forall \ x \in R$$

 $k-1>0 \ \cap \ (k+1)^2 - 4(k-1)(k+1) < 0$
 $k>1 \ \cap \ (k+1)(3k-5) > 0$
 $\Rightarrow \ k>\frac{5}{3}$

57.
$$y = -2x^2 - 4ax + k$$
; abscissa corresponding to the vertex is $-\frac{b}{2a}i.e.$, $\left(\frac{4a}{-4}\right) = -2 \implies a = 2$
now, $y(-2) = 7$
 $7 = -8 + 16 + k \implies k = -1$

58. If
$$a + b + c = 0$$

Sum of coefficient (b+c-a)+(c+a-b)+(a+b-c)=a+b+c=0 $\Rightarrow x=1$ is one root of the equation. $\Rightarrow \text{ other root} = \frac{a+b-c}{b+c-a}$

$$b + c - a$$
59. $x^3 - ax^2 + bx - c = 0$

Sum of roots $\alpha - \alpha + \beta = a \Rightarrow \beta = a$ If β is root of the equation, then ab = c.

60.
$$\alpha'\beta' = 2q^2 - r = 2\alpha^2\beta^2 - (\alpha^4 + \beta^4) = -(\alpha^2 - \beta^2)^2 < 0$$

160

62. In ΔABC,

$$\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \cot \frac{A}{2} \cdot \cot \frac{B}{2} \cdot \cot \frac{C}{2}$$
If $\cot \frac{A}{2}$, $\cot \frac{B}{2}$, $\cot \frac{C}{2}$ are in A.P. then $\cot \frac{A}{2} + \cot \frac{C}{2} = 2 \cot \frac{B}{2}$

$$\Rightarrow \cot \frac{A}{2} \cot \frac{C}{2} = 3$$

63.
$$f(x) = x \forall x \in [-9, 9]$$

64.
$$(3|x|-3)^{2} = |x|+7$$

$$\Rightarrow (|x|-2)(9|x|-1) = 0$$

$$|x|=2, \frac{1}{9} \Rightarrow x = \pm 2, \pm \frac{1}{9}$$

$$y = \sqrt{x(x-4)}$$

$$D_{f}: (-\infty, 0] \cup [4, \infty)$$
65.
$$x^{2} + 3|x| + 2 = 0 \Rightarrow (|x|+2)(|x|+1) = 0$$

$$D_f:(-\infty,0]\cup[4,\infty)$$

65.
$$x^2 + 3|x| + 2 = 0 \Rightarrow (|x| + 2)(|x| + 1) = 0$$

66.
$$x^2 - bx + c = 0$$
 α $\alpha + 1$

Sum of roots $2\alpha = b - 1 \Rightarrow \alpha = \frac{b - 1}{2}$

If α is the root of equation, then $\left(\frac{b-1}{2}\right)^2 - b\left(\frac{b-1}{2}\right) + c = 0 \implies b^2 - 4c = 1$

67.
$$y = \frac{3x^2 + 9x + 17}{3x^2 + 9x + 7}$$

 $3(y-1)x^2 + 9(y-1)x + (7y-17) = 0$
 $y-1 \neq 0$ then $D \ge 0$
 $81(y-1)^2 - 12(y-1)(7y-17) \ge 0$
 $(y-1)(y-41) \le 0$

68.
$$\frac{x^2 + 2x + 7}{2x + 3} - 6 < 0 \ \forall \ x \in R$$
$$\frac{x^2 - 10x - 11}{(2x + 3)} < 0$$
$$\frac{(x - 11)(x + 1)}{2x + 3} < 0$$
$$x \in \left(-\infty, -\frac{3}{2}\right) \cup (-1, 11)$$

Quadratic Equations

69.
$$y = \frac{3x-2}{7x+5} \Rightarrow x = \frac{5y+2}{3-7y} \Rightarrow y \in R - \left\{\frac{3}{7}\right\}$$

70.
$$\frac{x+2}{x-4} \le 0 \Rightarrow x \in [-2,4)$$

 $x^2 - ax - 4 \le 0$
 $f(-2) \ge 0 \cap f(4) > 0$

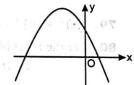
$$a \ge 0 \cap a < 3$$

 $\Rightarrow a \in [0,3)$

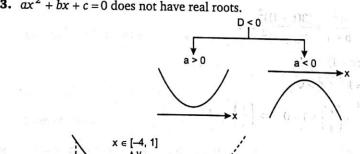
71.
$$P(x) = (P-3)x^2 - 2Px + (3P-6) \forall x \in R$$

$$P-3>0$$
 $D=0$
 $P>3$ $P=6$ $P=0$ $P=0$ $P=0$ $P=0$ $P=0$ $P=0$ $P=0$ $P=0$ $P=0$

72. Graph is downward $\Rightarrow a < 0$ Graph cut y-axis $\Rightarrow c > 0$ x-coordinate of vertex $\frac{-b}{2a} < 0 \implies b < 0$



73. $ax^2 + bx + c = 0$ does not have real roots.



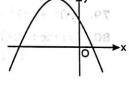
74.

$$y \in [3, 33]$$

75.
$$3x^2 - 17x + 10 = 0 \Rightarrow (x - 5)(3x - 2) = 0$$

If x = 5 is common root, then m = 0

If
$$x = \frac{2}{3}$$
 is common root, then $m = \frac{26}{9}$



Solution of Advanced Problems in Mathematics for JEE

76.
$$x^2 + (y+2)x - (y^2 + y - 1) = 0$$

 $D \ge 0 \Rightarrow (y+2)^2 + 4(y^2 + y - 1) \ge 0 \Rightarrow y \in \left(-\infty, -\frac{8}{5}\right] \cup [0, \infty)$

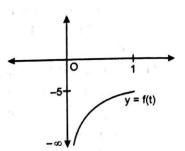
77. If
$$x = 3$$
 is root of this equation, then $k = -5$

$$\Rightarrow 3x^4 - 6x^3 - 5x^2 - 8x - 12 = (x - 3)(3x^2 + 4)(x + 1)$$

78.
$$a = -\frac{(4 + \sin^4 x)}{\sin^2 x}$$
 put $\sin^2 x = t \implies t \in [0, 1]$

$$a = -\left(\frac{4}{t} + t\right) = f(t)$$
Here, $f'(t) = \frac{4}{t^2} - 1 > 0$

 \therefore For atleast one real root, $a \in (-\infty, -5]$



79.
$$(rs)^2 + (st)^2 + (tr)^2 = (rs + st + tr)^2 - 2rst(r + s + t) = b^2 - 2(-c)(-a)$$

80. Let the roots be
$$t$$
, $t+1$ and $t+2$.

$$t + (t+1) + (t+2) = -a \implies 3(t+1) = -a$$

$$\sum t(t+1) = b \implies b+1 = 3(t+1)^{2}$$

$$\frac{a^{2}}{b+1} = \frac{[3(t+1)]^{2}}{3(t+1)^{2}} = 3$$

81.
$$(3x^2 + kx + 3)(x^2 + kx - 1) = 0$$

 $D_1 = k^2 - 36$ and $D_2 = k^2 + 4 > 0$

82.
$$\frac{1}{r+s} = \frac{1}{r} + \frac{1}{s} \implies \left(\frac{r}{s}\right)^2 + \left(\frac{r}{s}\right) + 1 = 0 \implies \left(\frac{r}{s}\right)^3 = 1$$

84. If
$$x \in (-\infty, -2] \cup [3, \infty)$$

 $x^2 - 2x - 8 = 0 \implies x = -2, 4$
if $x \in (-2, 3)$
 $x^2 = 4 \implies x = \pm 2$

85.
$$5x^2 + 12x + 3 = 0$$
 has $D < 0$
⇒ Both roots common.

86.
$$\alpha + \beta + \gamma = 6$$

$$\alpha\beta + \beta\gamma + \alpha\gamma = 5$$

$$\alpha\beta\gamma = 1$$

$$\Rightarrow \alpha^2 + \beta^2 + \gamma^2 = 26$$

$$\alpha^2\beta^2 + \beta^2\gamma^2 + \alpha^2\gamma^2 = 13$$

Quadratic Equations

163

103.

101. x2 - 2x + 4 = 3 (content)

161- XI 200 E = C+ 4(1- T)

 $\sin(\alpha+\beta)\sin(\alpha-\beta)=\sin^2\alpha-\sin^2\beta$

87.
$$2x^2 - 6x + k = 0$$
 $\frac{\frac{\alpha + 5i}{2}}{\frac{\alpha - 5i}{2}}$

Sum of roots = $\alpha = 3$

Product of roots = $\frac{\alpha^2 + 25}{4} = \frac{k}{2} \Rightarrow k = 17$

88.
$$x_1^2 + x_2^2 = (k-2)^2 - 2(k^2 + 3k + 5) = -(k^2 + 10k + 6) \le 18$$

89. $a(x^2 - x + 1) - (x^2 + x + 1) \ge 0$

89.
$$a(x^2-x+1)-(x^2+x+1)>0$$

$$\Rightarrow \qquad a \ge \frac{x^2 + x + 1}{x^2 - x + 1}$$

90.
$$f(1) = \lambda - 13 > 0 \implies \lambda > 13$$

$$f(2) = \lambda - 18 < 0 \implies \lambda < 18$$

$$f(3) = \lambda - 15 > 0 \implies \lambda > 15$$

$$\Rightarrow \lambda \in (15, 18)$$

94.
$$D = (b-c)^2 + 4a(2b+a+c) = (b-c)^2 + (4ac-4b^2) + (2a+2b)^2 > 0$$

95.
$$x^3 - x + 1 = 0$$

95.
$$x^3 - x + 1 = 0$$

$$c$$

$$(1-x)^3 - x^2(1-x) + x^3 = 0$$

$$\frac{1}{c+1}$$

$$\Rightarrow x^3 + 2x^2 - 3x + 1 = 0$$

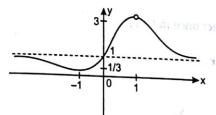
Sum of roots =
$$\frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c} = -2$$

96.
$$x^2 - 2(4k - 1)x + 15k^2 - 2k - 7 \ge 0 \ \forall \ x \in R$$

$$D \le 0$$

$$\Rightarrow k^2 - 6k - 8 \le 0 \Rightarrow 2 \le k \le 4$$

97.
$$f(x) = \frac{x^3 - 1}{(x - 1)(x^2 - x + 1)} = \frac{x^2 + x + 1}{x^2 - x + 1}$$
 (: $x \ne 1$)



Solution of Advanced Problems in Mathematics for JEE

98.
$$\frac{2x^2 + 2}{x^2 + mx + 4} > 0 \,\forall \, x \in \mathbb{R}$$
 $\Rightarrow x^2 + mx + 4 > 0 \,\forall \, x \in \mathbb{R}$

$$\Rightarrow D < 0 \Rightarrow m^2 - 16 < 0$$

99.
$$x^2 - 2|a+1|x+1=0$$

 $D \ge 0 \implies 4(a+1)^2 - 4 \ge 0 \implies a \in (-\infty, -2] \cup [0, \infty)$

100.
$$P(x) = a_1 x^2 + 2b_1 x + c_1 > 0$$
; $D_1 = 4(b_1^2 - a_1 c_1) < 0$, $a_1 > 0$, $c_1 > 0$
 $Q(x) = a_2 x^2 + 2b_2 x + c_2 > 0$; $D_2 = 4(b_2^2 - a_2 c_2) < 0$, $a_2 > 0$, $c_2 > 0$
 $f(x) = a_1 a_2 x^2 + b_1 b_2 x + c_1 c_2$
 $D = b_1^2 b_2^2 - 4a_1 a_2 c_1 c_2 < 0$

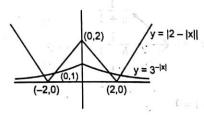
101.
$$x^2 - 2x + 4 = -3\cos(ax + b)$$

 $(x-1)^2 + 3 = -3\cos(ax + b)$
 $\Rightarrow x = 1 \text{ and } ax + b = \pi$

102.
$$\alpha + \beta = \alpha + \alpha \cdot r = 4$$
 (8) $+ \delta = \alpha \cdot r^2 + \alpha r^3 = 36$ $\Rightarrow r = 3, \alpha = 1$ (8) $+ \delta = \alpha \cdot r^2 + \alpha r^3 = 36$ $\Rightarrow r = 3, \alpha = 1$ (8) $+ \delta = \alpha \cdot r^2 + \alpha r^3 = 36$ $\Rightarrow r = 3, \alpha = 1$ (9) $+ \delta = \alpha \cdot r^2 + \alpha r^3 = 36$ (9) $+ \delta = \alpha \cdot r^2 + \alpha r^3 = 36$ (10) $+ \delta = \alpha \cdot r^2 + \alpha r^3 = 36$ (11) $+ \delta = \alpha \cdot r^2 + \alpha r^3 = 36$ (11) $+ \delta = \alpha \cdot r^2 + \alpha r^3 = 36$ (11) $+ \delta = \alpha \cdot r^2 + \alpha r^3 = 36$ (12) $+ \delta = \alpha \cdot r^2 + \alpha r^3 = 36$ (13) $+ \delta = \alpha \cdot r^2 + \alpha r^3 = 36$ (13) $+ \delta = \alpha \cdot r^2 + \alpha r^3 = 36$ (13) $+ \delta = \alpha \cdot r^2 + \alpha r^3 = 36$ (13) $+ \delta = \alpha \cdot r^2 + \alpha r^3 = 36$ (13) $+ \delta = \alpha \cdot r^2 + \alpha r^3 = 36$ (13) $+ \delta = \alpha \cdot r^2 + \alpha r^3 = 36$ (13) $+ \delta = \alpha \cdot r^2 + \alpha r^3 = 36$ (13) $+ \delta = \alpha \cdot r^2 + \alpha r^3 = 36$ (13) $+ \delta = \alpha \cdot r^2 + \alpha r^3 = 36$ (13) $+ \delta = \alpha \cdot r^2 + \alpha r^3 = 36$ (13) $+ \delta = \alpha \cdot r^2 + \alpha r^3 = 36$ (13) $+ \delta = \alpha \cdot r^2 + \alpha r^3 = 36$ (13) $+ \delta = \alpha \cdot r^2 + \alpha r^3 = 36$ (13) $+ \delta = \alpha \cdot r^2 + \alpha r^3 = 36$ (13) $+ \delta = \alpha \cdot r^2 + \alpha r^3 = 36$ (13) $+ \delta = \alpha \cdot r^2 + \alpha \cdot r^2 + \alpha \cdot r^2 = 36$ (13) $+ \delta = \alpha \cdot r^2 + \alpha \cdot r^2 = 36$ (13) $+ \delta = \alpha \cdot r^2 + \alpha \cdot r^2 = 36$ (13) $+ \delta = \alpha \cdot r^2 + \alpha \cdot r^2 = 36$ (13) $+ \delta = \alpha \cdot r^2 + \alpha \cdot r^2 = 36$ (13) $+ \delta = \alpha \cdot r^2 + \alpha \cdot r^2 = 36$ (14) $+ \delta = \alpha \cdot r^2 + \alpha \cdot r^2 = 36$ (15) $+ \delta = \alpha \cdot r^2 + \alpha \cdot r^2 = 36$ (15) $+ \delta = \alpha$

103.

164



104. We have $4x^2 - 16x + 15 < 0 \Rightarrow \frac{3}{2} < x < \frac{5}{2} \Rightarrow \cot \alpha = 2$, the integral solution of the given inequality and $\sin \beta = \tan 45^\circ = 1$

$$\sin(\alpha + \beta)\sin(\alpha - \beta) = \sin^2 \alpha - \sin^2 \beta = \frac{1}{1 + \cot^2 \alpha} - 1 = \frac{1}{1 + 4} - 1 = -\frac{4}{5}$$

105.
$$f_1(x) = f_2(x)$$

$$\Rightarrow 2 + \log_e x = x$$

$$\Rightarrow \log_e x = (x-2)$$

Clearly graphs intersect once in (0,1).

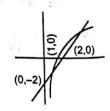
Now check

$$\Rightarrow g(x) = 2 + \ln x - x$$

$$g(e) > 0$$

$$g(e^2) < 0$$

 \Rightarrow one root between (e, e^2)



106.
$$x^4 - 3x^3 - 2x^2 - 3x + 1 = 0$$
 $\Rightarrow x^2 - 3x - 2 - \frac{3}{x} + \frac{1}{x^2} = 0$
 $\Rightarrow \left(x^2 + \frac{1}{x^2}\right) - 3\left(x + \frac{1}{x}\right) - 2 = 0 \Rightarrow \left(x + \frac{1}{x}\right)^2 - 3\left(x + \frac{1}{x}\right) - 4 = 0$
 $\Rightarrow t^2 - 3t - 4 = 0 \quad \text{(where } x + \frac{1}{x} = t\text{)}$
 $\Rightarrow (t - 4)(t + 1) = 0 \Rightarrow t = 4 \text{ or } t = -1$
 $\Rightarrow x + \frac{1}{x} = 4 \text{ or } x + \frac{1}{x} = -1$

Real solutions are from $x + \frac{1}{x} = 4 \implies x^2 + 1 = 4x \implies x^2 - 4x + 1 = 0$

Hence, sum of roots = 4.

107.
$$f(x) = x^2 - (k+4) + k^2 - 12$$

 $f(4) = 16 - 4(k+4) + k^2 - 12 < 0$
 $\Rightarrow -2 < k < 6$

108.
$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = k^2 - 2(k^2 + 2k - 4) = -k^2 - 4k + 8$$

Maximum value = 12

109.
$$f(x) = a^x - x \ln a$$

 $f'(x) = (a^x - 1) \cdot \ln a$

110. As a, b and c are the roots of $x^3 + 2x^2 + 1 = 0$, we have

$$a+b+c=-2$$

$$ab+bc+ca=0$$
Now, for finding the value of $\begin{vmatrix} a & b & c \\ b & c & a \end{vmatrix}$, evaluating using first row, we get

$$a(bc - a^{2}) - b(b^{2} - ac) + c(ab - c^{2}) = abc - a^{3} - b^{3} + abc + abc - c^{3}$$

$$= 3abc - a^{3} - b^{3} - c^{3}$$

$$= -(a^{3} + b^{3} + c^{3} - 3abc)$$

$$= -(a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ca)$$

$$= -(-2)[(-2)^{2} - 3(0)] = 8$$

111. $x^2 + px + q = 0$, $p, q \in \mathbb{R}, q \neq 0$ α, β real roots.

$$g(x) = 0 \alpha + \frac{1}{\alpha}, \beta + \frac{1}{\beta}$$

$$\alpha + \beta + \frac{1}{\alpha} + \frac{1}{\beta} = \left(\alpha + \frac{1}{\alpha}\right) \left(\beta + \frac{1}{\beta}\right)$$

$$-p + \frac{-p}{q} = \alpha\beta + \frac{\alpha}{\beta} + \frac{\beta}{\alpha} + \frac{1}{\alpha\beta}$$

$$-p + \frac{-p}{q} = q + \frac{p^2 - 2q}{q} + \frac{1}{q}$$

$$-pq - p = q^2 + p^2 - 2q + 1$$

$$p^2 + p(p+1) + q^2 - 2q + 1 = 0$$

$$(q+1)^2 - 4(q^2 - 2q + 1) \ge 0$$

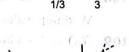
$$q^2 + 2q + 1 - 4q^2 + 8q - 4 \ge 0$$

$$-3q^2 + 10q - 3 \ge 0$$

$$3q^2 - 2q - q + 3 \le 0$$

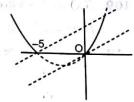
$$3q(q-3) - (q-3) \le 0$$

$$\left[\frac{1}{3}, 3\right]$$



112.
$$\ln(x^2 + 5x) = \ln(x + a + 3) \implies x^2 + 5x = x + a + 3 > 0$$

 $a + 3 > 0$
 $a > -3$
 $y = x + a + 3 \implies -5 + a + 3 \le 0$
 $a \le 2$
 $-3 < a \le 2$



113.
$$f(x) = x^2 + \frac{1}{x^2} - 6x - \frac{6}{x} + 2 = \left(x + \frac{1}{x}\right)^2 - 6\left(x + \frac{1}{x}\right)$$

Let $x + \frac{1}{x} = t$
 $f(x) = t^2 - 6t \ \forall \ t \in (-\infty, -2] \cup [2, \infty)$
min. value = -9 at $t = 3$

114.
$$x^3 + 2x^2 + 2x + c = (x^2 + bx + b) \left(x + \frac{c}{b} \right)$$

 $\Rightarrow b + \frac{c}{b} = 2 \text{ and } b + c = 2 \Rightarrow b = c = 1$

115.
$$\alpha\beta + \beta\gamma + \alpha\gamma = 0 \Rightarrow (\alpha\beta)^3 + (\beta\gamma)^3 + (\alpha\gamma)^3 = 3(\alpha\beta)(\alpha\gamma)(\beta\gamma)$$

Quadratic Equations

167

118.
$$\sum_{r=1}^{\infty} (\alpha^{r} + \beta^{r}) = (\alpha + \alpha^{2} + \alpha^{3} + ...) + (\beta + \beta^{2} + \beta^{3} + ...)$$

$$= \frac{\alpha}{1 - \alpha} + \frac{\beta}{1 - \beta}$$

$$4x^{2} + 2x - 1 = 0 \stackrel{\alpha}{\searrow} \frac{\alpha}{\beta}$$

$$4\left(\frac{x}{1 + x}\right)^{2} + 2\left(\frac{x}{1 + x}\right) - 1 = 0 \Rightarrow 5x^{2} - 1 = 0 \stackrel{\beta}{\longrightarrow} \frac{\beta}{1 - \beta}$$

$$(2011)^{x} = (2010)^{x} = (2010)^{x}$$

119.
$$\left(\frac{2011}{2014}\right)^x + \left(\frac{2012}{2014}\right)^x + \left(\frac{2013}{2014}\right)^x = 1$$

Let
$$f(x) = \left(\frac{2011}{2014}\right)^x + \left(\frac{2012}{2014}\right)^x + \left(\frac{2013}{2014}\right)^x \Rightarrow f(x)$$
 is a decreasing function for $x \in R$.

$$x^{2} + ax + 12 = 0$$
 ...(1)
 $x^{2} + bx + 15 = 0$...(2) Common roots
 $x^{2} + (a + b)x + 36 = 0$...(3)

(1) + (2) - (3)

$$\alpha^2 = 9 \implies \alpha = \pm 3$$

positive root $\alpha = 3$

124.
$$e^{\sin x} = t$$

 $t^2 - 4t - 1 = 0 \implies t = 2 \pm \sqrt{5} \implies e^{\sin x} = 2 \pm \sqrt{5}$ (Not possible)

125. Maximum value of
$$f(x) = 3$$

Minimum value of $f(x) = -1$

126.
$$f(1) = \lambda - 2 < 0$$

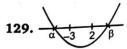
127.
$$2x^2 + 5x + 7 = 0$$
 has non-real roots $\Rightarrow \frac{a}{2} = \frac{b}{5} = \frac{c}{7}$

Min. value of a + b + c = 2 + 5 + 7 = 14

Max. value of a + b + c = 28 + 70 + 98 = 196

128. Distance =
$$\sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} = \sqrt{(1 - 2t)^2 + t^2} = \sqrt{5t^2 - 4t + 1}$$

Min. distance = $\frac{1}{\sqrt{5}}$ at $t = \frac{2}{5}$



and

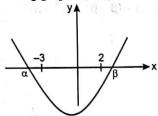
$$af(-1) < 0$$

f(-3)f(2) > 0

We have the equation $ax^2 + bx + c = 0$ has two roots α and β such that $\alpha < -3$ and $\beta > 2$.

168

If a > 0, then we have the following graphical representation:



Then, for all $x \in [-3, 2]$, f(x) < 0, we have the following graphical representation:

This implies that

$$f(-1) < 0$$
 and $f(1) < 0$

$$\Rightarrow$$
 $a-b+c<0$ and $a+b+c<0$

$$\Rightarrow a(a+|b|+c)<0$$

If a < 0, then for all $x \in [-3, 2]$, f(x) > 0. This imply that

$$\Rightarrow$$
 $f(-1) > 0$ and $f(1) > 0$

$$\Rightarrow$$
 $a-b+c>0$ and $a+b+c>0$

$$\Rightarrow a(a+|b|+c)<0$$

130. Let
$$x^2 + 5x = t$$

 $t^2 - 2t - 24 = 0 = (t - 6)(t + 4)$

$$x^2 + 5x - 6 = 0 = (x + 6)(x - 1)$$

$$x^2 + 5x + 4 = 0 = (x + 4)(x + 1)$$

131. Case-1:
$$x \ge 2$$

 $3(x-2) - (1-5x) + 4(3x+1) = 13 \Rightarrow x = \frac{4}{5}$ (Not possible)

Case-2:
$$\frac{1}{5} \le x < 2$$

 $-3(x-2) - (1-5x) + 4(3x+1) = 13 \Rightarrow x = \frac{2}{7}$ (Possible)

Case-3:
$$-\frac{1}{3} \le x < \frac{1}{5}$$

 $-3(x-2) + (1-5x) + 4(3x+1) = 13 \implies x = \frac{1}{2}$ (Not possible)

Case-4:
$$x < -\frac{1}{3}$$

 $-3(x-2) + (1-5x) - 4(3x+1) = 13 \implies x = -\frac{1}{2}$ (Possible)

Quadratic Equations

132. $\log_{\cos x} \sin x \ge 2 \Rightarrow \sin x \le \cos^2 x$

$$\sin^2 x + \sin x - 1 \le 0$$

$$0 < \sin x \le \frac{\sqrt{5} - 1}{2} \qquad (\sin x > 0)$$

133. Minimum value $\frac{-D}{4} = -5 \Rightarrow D = 20$

$$|\alpha - \beta| = \frac{\sqrt{D}}{1} = \sqrt{20}$$

134.
$$|x-3|+|x+5|=7x$$

$$2x + 2 = 7x \qquad x \ge 3$$

$$-(x-3) + (x+5) = 7x$$
 $-5 < x < 3$

$$-(x-3)-(x+5)=7x$$
 $x \le -5$

136.
$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ac) \implies ab+bc+ac = -4$$

$$a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ac) \implies abc = -4$$

140.
$$x^2 - 3x + 4 < x^2 + 3x + 4$$

$$\Rightarrow x > 0$$

142.
$$x^2 + 4x + 3 = 0$$

$$\alpha = -3, \beta = -1$$

143.
$$a^3 + b^3 + c^3 = 3abc$$

$$\Rightarrow a+b+c=0$$

$$\Rightarrow ax^2 + bx + c = 0$$
 has one root $x = 1$

145.
$$x_1 + x_2 + x_1 x_2 = a$$

$$x_1x_2 + x_1x_2(x_1 + x_2) = b$$

$$x_1^2 x_2^2 = c \implies b + c = x_1 x_2 (a + 1)$$

147.
$$(|x|-2)(|x|-1)=0 \Rightarrow x=\pm 1,\pm 2$$

147.
$$(|x|-2)(|x|-2) = 3$$

149. $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4(1-\sin 2\theta)^2 + 4\cos^2 2\theta$
 $= 4(2-2\sin 2\theta)$

150.
$$\sin^2 x + \sin x = -b \ \forall \ x \in [0, \pi]$$

$$0 \leq -b \leq 2$$

$$-2 \le b \le 0$$

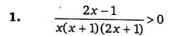
152.
$$x^2 + px - r = 0 = (x - \gamma)(x - \delta)$$

$$\alpha^2 + p\alpha - r = (\alpha - \gamma)(\alpha - \delta) = -q - r$$

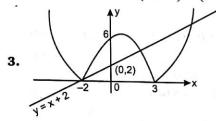
153.
$$2^{x+2} - 4^x \le 9 \cap 2^{x+2} - 4^x > 0$$
; $2^x (4-2^x) > 0$

169

Exercise-2: One or More than One Answer is/are Correct



$$\Rightarrow x \in (-\infty, -1) \cup \left(-\frac{1}{2}, 0\right) \cup \left(\frac{1}{2}, \infty\right)$$

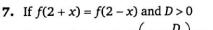


4. Apply $D \ge 0 \cap f(2) > 0 \cap f(-2) > 0 \cap -2 < \frac{a}{2} < 2$

5.
$$f(x) = x - 3$$
 $x > 4$
= $5 - x$ $2 < x < 4$
= $x + 1$ $1 < x < 2$

6.
$$a - b = \frac{1}{b} - \frac{1}{a}$$
 $\Rightarrow ab = 1$ (: $a \neq b$)

$$a-b=\frac{a}{b}$$
 $\Rightarrow a-\frac{1}{a}=a^2 \Rightarrow a^3-a^2+1=0$



Vertex of parabola is $\left(2, -\frac{D}{4a}\right)$ lies in IVth quadrant.

8. If
$$f(2+x) = f(2-x)$$
 and $D < 0$

$$f(-2) = 4a - 2b + c > 0$$

If $\log_{f(2)} f(3)$ is not defined then f(2) = 1

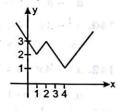
$$\Rightarrow f(x) \ge 1$$

If $\frac{-b}{2a} = 2 \implies a$ and b are opposite sign.

9. Case-I:
$$f(-1) \ge 0 \cap f(1) < 0 \cap f(2) \ge 0$$

$$a \le 0 \cap a < 0 \cap a \ge -\frac{3}{2}$$

$$\Rightarrow a \in \left[-\frac{3}{2}, 0\right]$$

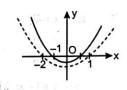


Quadratic Equations

171

Case-II: $f(1) \ge 0 \cap f(-1) < 0 \cap f(-2) \ge 0$ $a \ge 0 \cap a > 0 \cap a \le \frac{3}{2}$

$$\Rightarrow a \in \left(0, \frac{3}{2}\right)$$



10. As expression taking minimum value

So,
$$a > 0$$

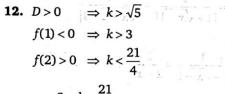
$$\frac{-b}{2a} < 0; \quad \frac{-D}{4a} < 0$$

$$\Rightarrow \quad a > 0, b > 0, D > 0$$

11.
$$ax^2 + bx + c > 0 \forall x \in R$$

11.
$$ax^2 + bx + c > 0 \forall x \in R$$

 $a > 0, D < 0$
 $f(0) = c > 0$
 $f(-3) + f(-2) = 13a - 5b + 2c > 0$
 $f(-3) + f(2) = 13a - b + 2c > 0$



13.
$$x^2 + px + q = 0$$

Sum of the roots = -13

Product of the roots = 30

$$\Rightarrow x^{2} + 13x + 30 = 0 = (x + 10)(x + 3)$$

$$\Rightarrow \text{ Correct roots are } x = -10, -3$$
14. $x^{2} - 3x + 2 > 0$

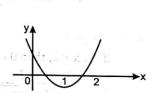
CMILS MA

14.
$$x^{2} - 3x + 2 > 0$$

 $(x - 2)(x - 1) > 0 \implies x \in (-\infty, 1) \cup (2, \infty)$
 $x^{2} - 3x - 4 \le 0$
 $(x - 4)(x + 1) \le 0 \implies x \in [-1, 4]$
then $x \in [-1, 1) \cup (2, 4]$

15.
$$5^x + (2\sqrt{3})^{2x} - 169 \le 0$$

 $5^x + 12^x - 169 \le 0$



If x > 2, then (x - 1)

Solution of Advanced Problems in Mathematics for JEE

if
$$x=2$$
 $5^2 + 12^2 = 169$
 $x>2$ $5^x + 12^x > 169$
 $x<2$ $5^x + 12^x < 169$

$$\Rightarrow x \in (-\infty, 2]$$

16.
$$f(x) = x^2 + ax + b$$

172

$$D_1:a^2-4b$$

$$g(x) = x^2 + cx + d$$

$$D_2: c^2 - 4d$$

$$D_1 + D_2 = a^2 + c^2 - 4(b+d) = (a-c)^2 > 0 \implies \text{ at least one of them is positive.}$$

17. Let
$$x-1=t^2$$

$$\frac{1}{\sqrt{x+2\sqrt{x-1}}} + \frac{1}{\sqrt{x-2\sqrt{x-1}}} = \frac{1}{\sqrt{t^2+2t+1}} + \frac{1}{\sqrt{t^2-2t+1}}$$
$$= \frac{1}{|t+1|} + \frac{1}{|t-1|} = \frac{1}{|1+\sqrt{x-1}|} + \frac{1}{|\sqrt{x-1}-1|}$$

If 1 < x < 2, then $0 < \sqrt{x-1} < 1$

$$\frac{1}{|1+\sqrt{x-1}|} + \frac{1}{|\sqrt{x-1}-1|} = \frac{1}{1+\sqrt{x-1}} + \frac{1}{1-\sqrt{x-1}} = \frac{2}{2-x}$$

If x > 2, then $\sqrt{x-1} > 1$

$$\frac{1}{|1+\sqrt{x-1}|} + \frac{1}{|\sqrt{x-1}-1|} = \frac{1}{\sqrt{x-1}+1} + \frac{1}{\sqrt{x-1}-1} = \frac{2\sqrt{x-1}}{x-2}$$

18.
$$\log_{1/3}(x^2 + 2px + p^2 + 1) \ge 0$$

$$\Rightarrow (x+p)^2 + 1 \le 1 \Rightarrow (x+p)^2 \le 0 \Rightarrow x = -p$$

$$kp^2 - kp - k^2 \le 0 \forall k \in \mathbb{R}$$

$$k^2 + (p-p^2) \ge 0 \forall k \in \mathbb{R}$$

$$D \le 0$$

19. (a)
$$\alpha + \beta = \alpha^2 + \beta^2$$

and $\alpha\beta = \alpha^2\beta^2 \Rightarrow \alpha\beta(\alpha\beta - 1) = 0 \Rightarrow \alpha = 0 \text{ or } \beta = 0 \text{ or } \alpha\beta = 1$

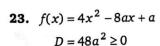
(b)
$$\tan 2\theta + \tan 3\theta = \frac{\sin 5\theta}{\cos 2\theta \cos 3\theta} = 0 \Rightarrow \sin 5\theta = 0 \Rightarrow \theta = \frac{n\pi}{5}$$

(c)
$$\frac{\left(\frac{2x_1}{x_2} + \frac{128x_3^2}{x_2^2} + \frac{x_2^3}{4x_1x_3^2}\right)}{3} \ge 4 \qquad (\because AM \ge GM)$$

(d) Equation of chord with mid-point (h, k) is $T = S_1$ \Rightarrow $(h-1)x+(k-3)y+(h+3k-h^2-k^2)=0$ If it is passes from (0,0).

Then, $h^2 + k^2 - h - 3k = 0$

- **20.** -2 < a < 2 $\Rightarrow a^2 \in [0,4)$ $x^2 - 4x - a^2 = 0 \implies x = 2 \pm \sqrt{4 + a^2}$
- **21.** If $\alpha + 2\beta = 0$ $\Rightarrow \alpha\beta < 0 \Rightarrow -2\beta^2 < 0 \Rightarrow q < 0$ $\alpha + \beta = -\beta = p$ $\alpha\beta = -2\beta^2 = q \Rightarrow 2p^2 + q = 0$
- **22.** $f(x) = (a+b-2c)x^2 + (b+c-2a)x + (c+a-2b) = 0 \Rightarrow f(1) = 0$
 - (a) if a > b > c > 0 $\Rightarrow a+b>2c$ f(0) = a + c - 2b < 0
 - (c) $g(x) = ax^2 + 2bx + c = 0 < \frac{\alpha}{\beta}$ g(0)=c>0
 - g(-1) = a 2b + c < 0(d) $cx^2 + 2bx + a = 0$ $1/\alpha$



- (1) (a) If f(x) is non-negative $\forall x \in R$, then a = 0
- (b) If a < 0, then f(0) < 0
- 01 = (61, -7)(6+7) = 10(c) If f(x) = 0 has two distinct solutions in (0, 1), then

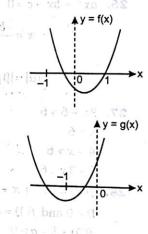
$$f(0) > 0 \implies a > 0$$

$$f(1) > 0 \implies a < \frac{4}{7}$$

$$0 < \frac{-b}{2a} < 1 \implies 0 < a < 1$$

24. $ax^2 + bx + c = 0$ has no real roots, then D < 0

$$f\left(-\frac{1}{2}\right) = a - 2b + 4c > 0 \implies a > 0$$

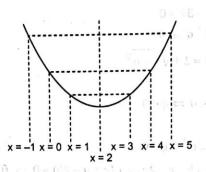


Solution of Advanced Problems in Mathematics for JEE

$$\frac{4a+2b+c}{a+3b+9c} = \frac{f(2)}{f\left(\frac{1}{3}\right)} > 0$$

25.

174



26.
$$ax^2 + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm i\sqrt{4ac - b^2}}{2a}$$
$$|\alpha| = |\beta| = \sqrt{\left(\frac{-b}{2a}\right)^2 + \frac{4ac - b^2}{4a^2}} = \sqrt{\frac{c}{a}}$$

27.
$$3x-6>6$$

$$x > 6$$
 $2 \le x \le 3$

$$4 - x > 6$$

$$1 \le x < 2$$

$$6 - 3x > 6$$

28.
$$f(x) = ax^2 + x + b - a$$

$$D < 0$$
 and $f(1) = b + 1 > 0$

$$f(0) = b - a > 0$$

$$f(1/2) = 4b + 2 - 3a > 0$$

29.
$$a^{2} + b^{2} = (a+b)^{2} - 2ab = 7a$$
$$a^{3} + b^{3} = (a+b)(7-ab) = 10$$

$$a^2 + b^2 = (a + b)^2 - 2ab = 7a^2$$
, $x = x^2$ switages non a $(x \land x)$ (a) ...(1)

(b) If a > 0, then ((0) - 0)

$$(a+b)=x$$

$$x^3 - 21x + 20 = 0$$

$$(x-1)(x+5)(x-4)=0$$

31.
$$\alpha + \beta + \gamma + \delta = 0$$

$$\alpha + \beta + \gamma + \delta = 0$$

$$Root = -\frac{1}{\delta}, -\frac{1}{\gamma}, -\frac{1}{\beta}, -\frac{1}{\alpha}$$

$$Put x \rightarrow -\frac{1}{\beta}$$

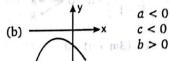
Put
$$x \to -\frac{1}{x}$$

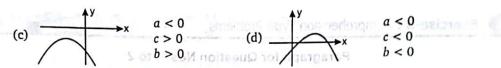
Quadratic Equations

32.
$$D \ge 0 \cap f(-1) > 0 \cap f(1) > 0$$

 $-2 < K \le \frac{1}{4}$

33. (a)
$$\xrightarrow{Ay}$$
 x





34. (a)
$$f(1)f(-1) > 0$$

(b)
$$f(1)f(-\frac{1}{2}) > 0$$
 (c) $f(1) = (x - 1) + (x - 1)$

(c)
$$f(-1)f(-2) > 0$$

(d)
$$b^2 - 4ac < 0$$

but a can be +ve or -ve.

35.
$$\alpha + \beta = -\frac{b}{a}$$
, $\alpha\beta = \frac{c}{a}$

$$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta = \frac{b^{2}}{a^{2}} - \frac{2c}{a} = \frac{b^{2} - 2ac}{a^{2}}$$

$$\frac{1}{\alpha^{2}} + \frac{1}{\beta^{2}} = \frac{(\alpha + \beta)^{2} - 2\alpha\beta}{\alpha^{2}\beta^{2}} = \frac{b^{2} - 2\alpha c}{a^{2}}$$

$$\frac{1}{\alpha^{3}} + \frac{1}{\beta^{3}} = \frac{(\alpha + \beta)(\alpha^{2} + \beta^{2} - \alpha\beta)}{(\alpha\beta)^{3}} = \frac{-b(b^{2} - 3ac)}{c^{3}}$$

$$36. \quad \lambda = \sin^2 x + \sin x - 1$$

37.
$$x^2 + 5x = x + a + 3 \ \forall \ x \in (-5, 0)$$

$$x^2 + 4x - 3 = a \forall x \in (-5, 0)$$

39.
$$x^2 - 2ax - a^2 = 0$$

 $\Rightarrow x = a(1 \pm \sqrt{2})$

$$x^2 + 2ax - 5a^2 = 0$$
 $x < a$

43.
$$(\alpha + \beta) + (\gamma + \delta) = 12$$
 $\Rightarrow \alpha + \beta = \gamma + \delta = 60$ A readle and $(\alpha + \beta) + (\gamma + \delta) = 12$...(1)

$$\alpha\beta(\gamma+\delta)+\gamma\delta(\alpha+\beta)=54 \Rightarrow \alpha\beta+\gamma\delta=9$$
 ...(2)

$$(\alpha\beta)(\gamma\delta) = 14$$
 ...(3)

Solution of Advanced Problems in Mathematics for JEE

176

$$\Rightarrow \alpha\beta = 7, \ \gamma\delta = 2$$
44. $l\left(\frac{K^3}{K-1}\right) + m\left(\frac{K^2 - 3}{K-1}\right) + n = 0$

$$K = a$$

$$K = b$$

$$K = c$$

$$lK^3 + mK^2 + nK - (3m + n) = 0$$

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

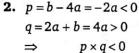
1.
$$f(-1-x) = f(-1+x) \forall x \in R$$

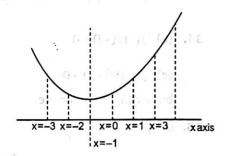
 \Rightarrow graph of $f(x)$ is symmetric about $x = -1$.
 $-\frac{b}{2a} = -1 \Rightarrow b = 2a$
 $\alpha = f(-2) = 4a - 2b + c$

$$\beta = f(3) = 9a + 3b + c$$

 $\gamma = f(-3) = 9a - 3b + c$

Using graph $f(3) > f(-3) > f(-2) \Rightarrow \beta > \gamma > \alpha$





Paragraph for Question Nos. 3 to 4

Sol.
$$(k+1) x^2 - (20k+14) x + 91k + 40 = 0$$

 $f(4) = 27k > 0$
 $f(7) = -9 < 0$ \rightarrow One root is lie (4, 7)
 $f(10) = -9k < 0$
 $f(13) = 27 > 0$ \rightarrow Other root is lie (10, 13)

Paragraph for Question Nos. 5 to 7

5.
$$f(x) = x^2 + bx + c \forall x \in R$$

Least value at $\frac{-b}{2} = -1 \Rightarrow b = 2$
Graph of $f(x)$ cuts y-axis, when $x = 0$
 $\Rightarrow c = 2$

Quadratic Equations

177

$$\Rightarrow f(x) = x^2 + 2x + 2$$

Least value of f(x) = 1

6.
$$f(-2) + f(0) + f(1) = 9$$

7. $a \in (1, \infty)$

Paragraph for Question Nos. 8 to 9

Paragraph for Question No.

Sol.
$$(\log_2 x)^2 - 4(\log_2 x) - m^2 - 2m - 13 = 0$$

8.
$$D>0 \Rightarrow m^2+2m+17>0 \ \forall \ m \in \mathbb{R}^4$$
 not be sufficiently an integer of

9.
$$m^2 + 2m - (\log_2 x)^2 + 4(\log_2 x) + 13 = 0$$

 $D \ge 0$

$$\Rightarrow (\log_2 x - 6)(\log_2 x + 2) \ge 0 \Rightarrow x \in \left(0, \frac{1}{4}\right] \cup [64, \infty)$$

Paragraph for Question Nos. 10 to 11

Sol.
$$x^4 - 2x^3 - 3x^2 + 4x - 1 = 0$$
 has four roots $a, \frac{1}{a}, b, \frac{-1}{b}$

$$\left(a + \frac{1}{a}\right) + \left(b - \frac{1}{b}\right) = 2^{-1} \ge \frac{1}{a}$$
 ... (1)

$$\left(b - \frac{1}{b}\right) - \left(a + \frac{1}{a}\right) = -4 \qquad \dots (2)$$

1= 12 1 1 -3 =1

Paragraph for Question Nos. 12 to 14

Sol.
$$f(x) - (6-x) = 0 = (x-1)(x-2)(x-3)(x-4)(x-5)$$

 $f(x) = (x-1)(x-2)(x-3)(x-4)(x-5) + (6-x)$

Paragraph for Question Nos. 15 to 16

Sol.
$$x^3 - x^2(1 + \sin \theta + \cos \theta) + x(\sin \theta + \cos \theta + \sin \theta \cos \theta) - \sin \theta \cos \theta = 0$$

 \Rightarrow Roots are 1, $\sin \theta$, $\cos \theta$.

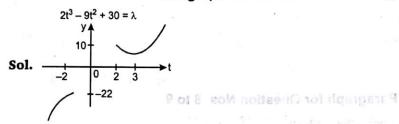
Paragraph for Question Nos. 17 to 18

Sol.
$$2[1+P(x)] = P(x-1) + P(x+1)$$

 $2+2[ax^2+bx+c] = a(x-1)^2 + b(x-1) + c + a(x+1)^2 + b(x+1) + c$
 $\Rightarrow a = 1$
 $P(0) = c = 8$
 $P(2) = 4a + 2b + c = 32 \Rightarrow b = 10$

The state of the s

Paragraph for Question Nos. 19 to 21



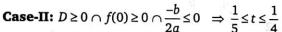
Paragraph for Question Nos. 22 to 23

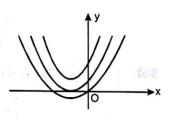
22.
$$D > 0$$

 $(2t-1)^2 - 4t(5t-1) > 0$
 $16t^2 - 1 < 0 \Rightarrow -1 < t < 1$

$$16t^2 - 1 < 0 \Rightarrow \frac{-1}{4} < t < \frac{1}{4} \qquad (t \neq 0)$$

23. t > 0





Exercise-4: Matching Type Problems

(B)
$$3x^2 + 2(a^2 + 1)x + (a^2 - 3a + 2) = 0$$

 $\alpha\beta < 0$
 $a^2 - 3a + 2 < 0 \Rightarrow (a - 1)(a - 2) < 0$

(C)
$$\sqrt{x+3-4\sqrt{x-1}} + \sqrt{x+8-6\sqrt{x-1}} = 1$$

Let $x-1=t^2$; $|t-2|+|t-3|=1$

(D) A.M. =
$$\frac{\alpha + \beta + \gamma + \delta}{4} = 2$$

G.M. = $(\alpha\beta\gamma\delta)^{1/4} = 2$

A.M. = G.M. $\Rightarrow \alpha = \beta = \gamma = \delta = 2$

Quadratic Equations

179

3. (A)
$$x^4 - 8x^2 - 9 = 0$$

$$(x^2 - 9)(x^2 + 1) = 0$$
 $\Rightarrow x = 3, -$

(B)
$$x^{2/3} + x^{1/3} - 2 = 0$$

$$(x^{1/3} + 2)(x^{1/3} - 1) = 0 \Rightarrow x = -8, 1$$

(C)
$$(\sqrt{3x+1})^2 = (\sqrt{x}-1)^2$$

$$\Rightarrow$$
 $3x + 1 = x + 1 - 2\sqrt{x} \Rightarrow 2x = -2\sqrt{x}$ (Not possible)

(D)
$$(3^x - 9)(3^x - 1) = 0$$
 $\Rightarrow x = 0, 2$

4. (A) :
$$(a+b) = -a \& ab = b \Rightarrow (1,-2)$$
 and $(0,0)$

(B)
$$P = \overline{O}$$
, $Q = 8\cos\frac{\pi}{9}\cos\frac{2\pi}{9}\cos\frac{4\pi}{9} = 1$ find at on less toutielle such and $C = x_0 + 4 + 3$

(C)
$$ar^6 = \sqrt{2}$$

Product =
$$(\sqrt{2})^{11} = 2^{11/2}$$

$$m = 11$$

$$n = 4$$

(D)
$$x = y = 3$$

$$(x-y)^2 + (y-3)^2 = 0$$

$$5x - 4y = 3$$

Exercise-5: Subjective Type Problems

1.
$$f\left(\cos\frac{\pi}{7}\right) = \sin\frac{\pi}{7}\sin\frac{3\pi}{7} + \sin\frac{3\pi}{7}\sin\frac{5\pi}{7} + \sin\frac{\pi}{7}\sin\frac{5\pi}{7}$$

$$=2\cos^2\frac{\pi}{7}+\cos\frac{\pi}{7}-1$$

$$\Rightarrow f(x) = 2x^2 + x - 1$$

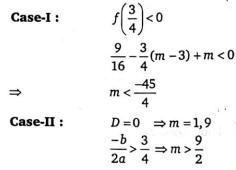
2.
$$(r-a)(r-b)(r-c)(r-d) = (-1) \times (-3) \times (1) \times (3)$$

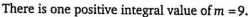
$$\Rightarrow$$
 $(r-a)+(r-b)+(r-c)+(r-d)=0$

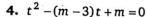
3. Let
$$x^2 + x + 1 = t$$
 $\forall t \in \left[\frac{3}{4}, \infty\right)$

$$t^2 - (m-3)t + m = 0 \quad (x = -x = 0)(x = -x = 0)$$

180







 $t \in [3/4, \infty)$ has four distinct real roots, then

D > 0

$$\Rightarrow m^2 - 10m + 9 > 0$$

$$\Rightarrow m \in (-\infty, 1) \cup (9, \infty)$$

$$\frac{-b}{2a} > \frac{3}{4} \implies m > \frac{9}{2}$$

$$f\left(\frac{3}{4}\right) > 0 \implies m > \frac{-45}{4} \implies m \in (9, \infty)$$

5.
$$f(t) = (m^2 - 12)t^2 - 8t - 4 = 0$$

 $(t \ge 0)$

$$f(0) = -4 < 0$$

$$m^2 - 12 \le 0 \implies m \in [-2\sqrt{3}, 2\sqrt{3}]$$

Case-I: D < 0

$$\Rightarrow m^2 - 8 < 0 \Rightarrow m \in (-2\sqrt{2}, 2\sqrt{2})$$

Case-II: $D \ge 0 \Rightarrow m \in (-\infty, -2\sqrt{2}] \cup [2\sqrt{2}, \infty)$

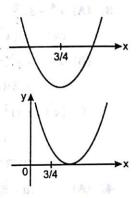
$$\frac{-b}{2a} = \frac{4}{m^2 - 12} < 0 \implies m \in (-2\sqrt{3}, 2\sqrt{3})$$

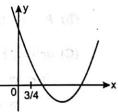
$$\Rightarrow \qquad m \in [-2\sqrt{3}, 2\sqrt{3}]$$

6.
$$(e^x - 2) \left[\sin \left(x + \frac{\pi}{4} \right) \right] (x - \ln 2) (\sin x - \cos x) < 0$$

$$\frac{1}{\sqrt{2}}(x-\ln 2)\cdot(\sin x+\cos x)(x-\ln 2)(\sin x-\cos x)<0=\frac{1}{\sqrt{2}}(x-\ln 2)^2(\sin^2 x-\cos^2 x)<0$$

$$\Rightarrow \cos 2x > 0, x \neq \ln 2$$





$$x \in \left[0, \frac{\pi}{4}\right] \cup \left(\frac{3\pi}{4}, \pi\right] - \{\ln 2\}$$

Least positive integral value is 3.

7.
$$x^2 + 17x + 71 = \lambda^2 \implies \lambda \in \mathbb{Z}$$

 $x^2 + 17x + (71 - \lambda^2) = 0$
 $D = \text{perfect square} = m^2 \text{ (say)}$

$$(m-2\lambda)(m+2\lambda)=1\times 5$$

$$\Rightarrow m - 2\lambda = 1$$

$$m + 2\lambda = 5$$

8.
$$P(x) = (x^4 - x^3 - x^2 - 1)(x^2 + 1) + (x^2 - x + 1)$$

 $P(\alpha) + P(\beta) + P(\gamma) + P(\delta) = (\alpha^2 - \alpha + 1) + (\beta^2 - \beta + 1) + (\gamma^2 - \gamma + 1) + (\delta^2 - \delta + 1) = 6$

 $m^2 = 289 - 4(71 - \lambda^2)$

9. If
$$-\frac{a}{2} \le 1$$

$$f(x)_{\text{max}} = f(4) \implies 4a + 18 = 6 \implies a = -3 \text{ (Not possible)}$$
if $-\frac{a}{2} \ge 1$

$$f(x)_{\text{max}} = f(-2) \Rightarrow a = 0$$
 (Not possible)

There is no real value of 'a'.

10.
$$x^2 - 8x - (n^2 - 10n) = 0$$

 $D < 0 \Rightarrow n^2 - 10n + 16 < 0$
 $(n-8)(n-2) < 0$
 $\Rightarrow 2 < n < 8 \text{ and } n \ne 10$

11.
$$x^2 + 2(m-1)x + (m+5) > 0 \forall (x > 1)$$

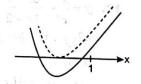
Case-I:
$$D < 0$$

 $m^2 - 3m - 4 < 0 \implies -1 < m < 4$

Case-II: $D \ge 0$ $\Rightarrow m \in (-\infty, -1] \cup [4, \infty)$ $f(1) \ge 0 \Rightarrow m \ge -\frac{4}{3}$

$$\frac{-b}{2a} < 1 \implies m > 0$$

 \Rightarrow $m \in (-1, \infty)$



Solution of Advanced Problems in Mathematics for JEE

12.
$$ax^4 + bx^3 - x^2 + 2x + 3 = (x + 2)(x - 1) Q(x) + (4x + 3)$$

Put $x = 1$ $a + b = 3$
 $x = -2$ $b = 2a$
13. $D > 0$ \cap $\frac{-b}{2a} > 4$ \cap $f(4) \ge 0$
 $k - 1 > 0$ \cap $4k > 4$ \cap $k^2 - 3k + 2 \ge 0$
 $k > 0$ \cap $k > 1$ \cap $(k - 2)(k - 1) \ge 0$

⇒
$$k \ge 2$$

14. $x^2 - 3x + 2 = (x - 1)(x - 2)$

If (x-1) is a factor of $x^4 - px^2 + q = 0$. Then

$$p-q=1$$
 ...(1

If (x-2) is a factor of $x^4 - px^2 + q = 0$. Then

$$px^2 + q = 0$$
. Then
$$(4p - q = 16)^{-4} = (1 + 11 - 4)^{-4} = (1 + 14 + 4)^{-4} = (1$$

$$\Rightarrow p = 5, q = 4$$

$$\Rightarrow p + q = 9$$

15.
$$x^2 + 2xy + ky^2 + 2x + k = 0$$
 9 division folds to a non-zero degree of A $= 2x + 2xy + ky^2 + 2x + k = 0$

if it can be resolved into two linear factors, then

abc + 2 fgh - bg² - af² - ch² = 0
$$k^{2} - k - k = 0$$

$$k = 0, 2$$

16. $(a + 1) x^2 + 2 = ax + 3$ has exactly one solution.

$$\Rightarrow D = 0$$

$$a^{2} + 4(a+1) = 0$$

$$(a+2)^{2} = 0 \Rightarrow a = -2 \Rightarrow a^{2} = 4$$

$$x^{2}(y-1) - x(3y-a) + 2y - 1 = 0 \ \forall \ x \in R$$

$$(3y-a)^2 - 4(y-1)(2y-1) \ge 0 \ \forall \ y \in R$$

 $y^2 - 6y(a-2) + a^2 - 4 \ge 0 \ \forall \ y \in R$

 $D \le 0$

 $D \ge 0$

$$36(a-2)^2 - 4(a^2 - 4) \le 0$$
$$(a-2)(2a-5) \le 0$$

$$2 \le a \le \frac{5}{2}$$

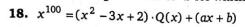
 \Rightarrow Integral value of a=2

At a=2

$$f(x) = \frac{x^2 - 2x + 1}{x^2 - 3x + 2} = \frac{(x - 1)^2}{(x - 2)(x - 1)}$$
$$f(x) = \frac{x - 1}{x - 2}(x \neq 1)$$

Range $R - \{0, 1\}$

 \Rightarrow No integral values of 'a' for which range is R.



at
$$x=1$$
 at $x=2$

$$a+b=1$$

$$\Rightarrow$$

$$2a + b = 2^{100}$$
 On ALE 7.05 (a) (a) ...(2)

$$\Rightarrow a = 2^{100} - 1, b = 2 - 2^{100}$$

Remainder = $(2^{100} - 1)x + 2(1 - 2^{99})$

$$\Rightarrow k = 99$$

19.
$$x = 7^{1/3} + 7^{2/3}$$

$$x^3 = 7 + 49 + 3 \times 7(x) \implies x^3 - 21x - 56 = 0$$

Product of all roots = 56

21. Clearly P(x) is a second degree polynomial.

$$P(x) = ax^2 + bx + c$$

$$P'(x) = 2ax + b$$

$$P(x) - P'(x) = ax^{2} + (b-2a)x + c - b = x^{2} + 2x + 1$$

$$a = 1, b - 2a = 2, c - b = 1$$

$$a = 1, b = 4, c = 5$$

$$P(x) = x^2 + 4x + 5$$

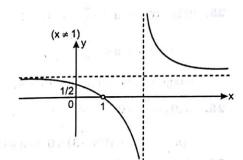
$$P(-1) = 1 - 4 + 5 = 6 - 4 = 2$$

23. Let
$$x^2 = t$$

$$t^2 + kt + k = 0$$

$$D > 0$$
 $\Rightarrow k \in (-\infty, 0) \cup (4, \infty)$

$$f(0) < 0 \implies k < 0$$



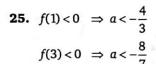
 $0 \ge 0$ $v = v^{-1} \cdot v + 10 \le 0$

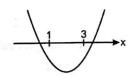
21. Clearly Print i second degree polynomialis to

0-11-1-4-5-6-1-2

D = 0 - 101 - 101 - 0 = 0

184





Integral values of 'a' are -5, -4, -3, -2.

$$26. \ f(0)f\left(\frac{\pi}{2}\right) \le 0$$

$$-(n+1)(2n+1)(n-3) \le 0 \Rightarrow n \in [3,\infty)$$

27.
$$f(x) = ax^2 + bx + c$$

$$a, b, c \in I$$

$$ax^2 + bx + c = a(x - \alpha)(x - \beta) + p$$
 If $a = \alpha, \beta \in I$ the roll is the sentent angular of

the sole are beyond or the

$$ax^{2} + bx + c - 2p = a(x - \alpha)(x - \beta) - p = 0$$

Not possible for integral values of x.

28.
$$9x^2 + 2x(y - 46) + y^2 - 20y + 244 = 0$$

$$D \ge 0$$
 $\Rightarrow y^2 - 11y + 10 \le 0$

$$(y-1)(y-10) \le 0 \Rightarrow 1 \le y \le 10 \quad \text{(if } y = 1) \le x \text{ (if } y = 1)$$

$$y^2 + 2y(x-10) + 9x^2 - 92x + 244 = 0$$

$$D \ge 0 \Rightarrow x^2 - 9x + 18 \le 0$$

$$(x-3)(x-6) \le 0 \Rightarrow 3 \le x \le 6$$

29.
$$a+b=3$$
 and $a^3+b^3=7 \Rightarrow a^3+(3-a)^3=7 \Rightarrow 9a^2-27a+20=0$

Sum of distinct values of 'a' is 3.

30.
$$(y^2-3)^2+(x-4)^2=1$$

$$\Rightarrow x = 4 + \cos \theta, \quad y^2 = 3 + \sin \theta$$

$$M = 36, m = 1$$

31.
$$x_1 + x_2 + x_1x_2 = a$$

$$x_1x_2 + x_1x_2(x_1 + x_2) = b$$

$$x_1^2 x_2^2 = c$$

If
$$b+c=2(a+1) \Rightarrow x_1x_2=2$$

32.
$$x^3 + 3x^2 + 4x + 5 = 0 \implies x = \alpha$$
 is root

$$x^3 - 3x^2 + 4x - 5 = 0 \implies x = \beta$$
 is root

$$\Rightarrow \alpha + \beta = 0$$

33. 5

$$(1)$$
 $-(2)$ (2) $-(3)$

$$(x-z)(x+y+z)=1$$
 and $(y-x)(x+y+z)=-2$

Quadratic Equations

Divide
$$z = \frac{x+y}{2}$$

$$y^{2} + y\left(\frac{x+y}{2}\right) + \left(\frac{x+y}{2}\right)^{2} = 1 \text{ and } x^{2} - 2xy - 5y^{2} = 0$$

 $x = (1 + \sqrt{6})y$

$$y^2 = \frac{2}{9 + 3\sqrt{6}}$$
 put values

34.
$$\frac{4(1-a-b)-(a-b)^2}{4} > \frac{4(1+a+b)-(a+b)^2}{-4}$$

$$\Rightarrow 8 > (a+b)^2 + (a-b)^2 \Rightarrow a^2 + b^2 < 4$$

35.
$$\sqrt[3]{20x + \sqrt[3]{20x + 13}} = 13$$

$$\sqrt[3]{20x + \sqrt[3]{20x + \sqrt[3]{20x + \sqrt[3]{20x + \sqrt[3]{20x + \dots \infty}}}} = 13$$

$$\Rightarrow \sqrt[3]{20x + 13} = 13 \Rightarrow 20x = 2197 - 13$$
$$\Rightarrow x = \frac{2184}{20} = \frac{546}{5}$$

36. Let
$$f(x) = x^2 - 2(a+1)x + a(a-1)$$

$$f(1-a)<0 \qquad \qquad \cap \qquad f(1+a)<0$$

$$4a^2 - 3a - 1 < 0 \quad \cap \quad 3a + 1 > 0$$

$$-\frac{1}{4} < a < 1 \qquad \cap \quad a > -\frac{1}{3}$$

$$\Rightarrow \quad a \in \left(-\frac{1}{4}, 1\right)$$

$$\cap$$
 a> $-\frac{1}{3}$

$$\Rightarrow a \in \left[-\frac{1}{4}, 1\right]$$

37.
$$(x-8)(x-2)<0$$

$$\Rightarrow$$
 2

$$38. \sin\theta + \cos\theta = \frac{-b}{a}$$

$$\sin\theta\cdot\cos\theta=\frac{c}{a}$$

$$(\sin \theta + \cos \theta)^2 = 1 + 2\sin \theta \cos \theta = \frac{b^2}{a^2} = 1 + \frac{2c}{a}$$

$$\Rightarrow \frac{b^2 - a^2}{a^2} = \frac{2c}{a}$$

Solution of Advanced Problems in Mathematics for JEE

186

39.
$$\cos^2 x + (1-a)\cos x - a^2 \le 0 \ \forall \ x \in R$$

Let $\cos = t \ \forall \ t \in [-1,1]$

$$t^2 + (1-a)t - a^2 \le 0 \ \forall \ t \in [-1,1]$$

$$f(-1) \leq 0$$

$$\Rightarrow \qquad a^2 - a \ge 0$$

$$f(-1) \le 0$$

$$\Rightarrow \qquad a^2 = a \ge 0$$

$$\Rightarrow \qquad a \in (-\infty, 0] \cup [1, \infty)$$

$$f(1) \leq 0$$

$$f(1) \le 0$$

$$\Rightarrow a^2 + a - 2 \ge 0$$

$$a^{2} + a - 2 \ge 0$$

 $(a+2)(a-1) \ge 0 \implies a \in (-\infty, -2] \cup [1, \infty)$

40.
$$2x^2 - 35x + 2 = 0$$

$$2\alpha - 35 = -\frac{2}{\alpha} \quad \text{and} \quad 2\beta - 35 = -\frac{2}{\beta}$$

42.
$$xF(x) - 1 = k(x-1)(x-2)(x-3)...(x-9)$$

$$\Rightarrow F(x) = \frac{k(x-1)(x-2)(x-3)...(x-9) + 1}{x}$$

Constant term =
$$k(-9!) + 1 = 0$$

$$k=\frac{1}{9!}$$

44.
$$\cos A + \cos B + \cos C = -a$$

$$\cos A \cos B + \cos B \cos C + \cos A \cos C = b$$

$$\cos A \cos B \cos C = -c$$

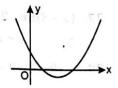
$$a^2 - 2b - 2c = \cos^2 A + \cos^2 B + \cos^2 C + 2\cos A\cos B\cos C$$

=1

$$D > 0 \cap \frac{-b}{2a} > 0$$

$$k^2 - 10k + 9 > 0 \cap \frac{k-3}{k} < 0$$

$$k \in (-\infty, 1) \cup (9, \infty) \cap k \in (0, 3) \Rightarrow k \in (0, 1)$$



Solution to Chapter 9 till end (Chapter 26) is in part 2

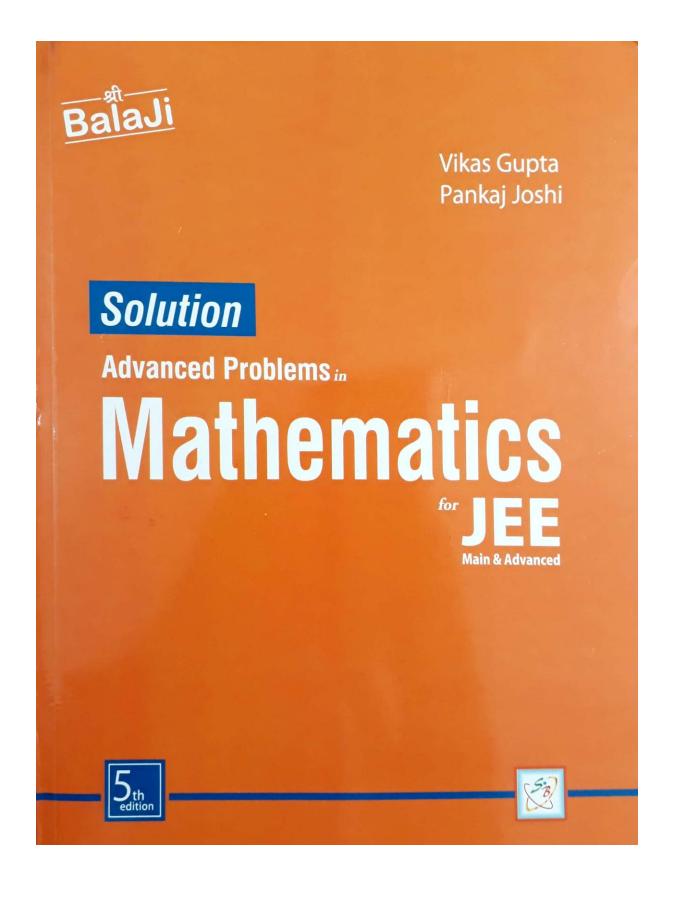
Balaji

Solution to Advanced Problems in Mathematics Chapter 9 to 26

for IIT JEE Main and Advanced

by

Vikas Gupta and Pankaj Joshi



SOLUTION to

Advanced Problems

in

MATHEMATICS

for

JEE (MAIN & ADVANCED)

by:

Vikas Gupta

Director

Vibrant Academy India(P) Ltd. KOTA (Rajasthan) Pankaj Joshi

Director

Vibrant Academy India(P) Ltd. KOTA (Rajasthan)

SHRI BALAJI PUBLICATIONS

(EDUCATIONAL PUBLISHERS & DISTRIBUTORS)
[AN ISO 9001-2008 CERTIFIED ORGANIZATION]

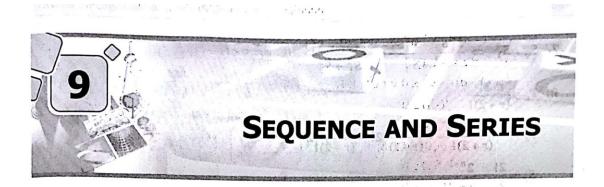
Muzaffarnagar (U.P.) - 251001

CONTENTS

1. Function	1 – 28
2. Limit	29 – 42
Continuity, Differentiability and Differentiation	43 – 73
4. Application of Derivatives	74 – 101
5. Indefinite and Definite Integration	102 – 134
6. Area Under Curves	135 – 141
7. Differential Equations	142 – 149
-GEBRA	24. Solution o
8. Quadratic Equations	150 – 186
9. Sequence and Series	187 – 207
0. Determinants	208 – 215
1. Complex Numbers	216 – 223
2. Matrices	224 – 228
3. Permutation and Combinations	229 – 235
4. Binomial Theorem	236 – 241
5. Probability	242 – 247
6. Logarithms	248 – 261

CO-ORDINATE GEOMETRY	
17. Straight Lines	262 – 273
18. Circle	274 – 284
19. Parabola	285 – 289
20. Ellipse	290 – 293
21. Hyperbola	294 – 295
TRIGONOMETRY	
22. Compound Angles	296 – 318
23. Trigonometric Equations	319 – 327
24. Solution of Triangles	328 – 342
25. Inverse Trigonometric Functions	343 – 351
VECTOR & 3DIMENSIONAL GEOMET	RY
26. Vector & 3Dimensional Geometry	352 – 368

Chapter 9 - Sequence and Series



Exercise-1: Single Choice Problems

- 1. AM ≥ GM
- 3. $2 \sec \alpha = \sec (\alpha 2\beta) + \sec (\alpha + 2\beta)$ $\frac{2}{\cos \alpha} = \frac{\cos (\alpha + 2\beta) + \cos (\alpha - 2\beta)}{\cos (\alpha - 2\beta)\cos (\alpha + 2\beta)}$

$$\cos 2\alpha + \cos 4\beta = \cos \alpha (2\cos \alpha \cos 2\beta)$$

$$2\cos^2 \alpha - 1 + 2\cos^2 2\beta - 1 = 2\cos^2 \alpha \cos 2\beta$$

$$\cos^2 \alpha (1 - \cos 2\beta) + (\cos 2\beta + 1)(\cos 2\beta - 1) = 0$$

$$\cos^2 \alpha = 1 + \cos 2\beta$$

armhers avaible by 16 - 16

4. If
$$a, b, c$$
 A.P. $\Rightarrow b = \frac{a+c}{2}$
if c, d, e H.P. $\Rightarrow d = \frac{2ec}{e+c}$
if b, c, d G.P. $\Rightarrow c^2 = bd$
 $c^2 = \left(\frac{a+c}{2}\right)\left(\frac{2ec}{e+c}\right)$
 $\Rightarrow c^2 = ae$

5.
$$(a+nd)^2 = (a+md)(a+rd)$$

$$\Rightarrow \frac{a}{d} = \frac{mr-n^2}{2n-m-r}$$
if m, n, r in H.P., then $n = \frac{2mr}{m+r} \Rightarrow \frac{a}{d} = \frac{-n}{2}$

6. A.M. $(\alpha, \beta, \gamma, \delta) = \frac{4}{4} = 1$ G.M. $(\alpha, \beta, \gamma, \delta) = 1 \implies \alpha = \beta = \gamma = \delta = 1$ So, equation is $(x - 1)^4 = 0$

7.
$$S_3 = S_1^2 \Rightarrow \frac{S_1^4 S_2^2 - S_2^2 S_3^2}{S_1^2 + S_3^2} = \frac{S_2^2 (S_1^4 - S_3^2)}{S_1^2 + S_3^2} = 0$$

8.
$$T_r = \frac{r \cdot 2^r}{(r+2)!}$$

$$T_r = \frac{(r+2-2)2^r}{(r+2)!} = \frac{1}{(r+1)!} 2^r = \frac{1}{(r+2)!} 2^{r+1}$$

$$S_n = \frac{2!}{2!} - \frac{2^{n+1}}{(n+2)!}$$

$$\lim_{n \to \infty} S_n = S_{\infty} = 1 \qquad \left[\text{as } \lim_{n \to \infty} \frac{2^{n+1}}{(n+2)!} = 0 \right]$$

9.
$$\tan^2 \frac{\pi}{12} = \tan \left(\frac{\pi}{12} - x \right) \tan \left(\frac{\pi}{12} + x \right)$$

$$\tan^2 \frac{\pi}{12} = \frac{\tan^2 \frac{\pi}{12} - \tan^2 x}{1 - \tan^2 \frac{\pi}{12} \tan^2 x} \implies \tan^2 x \left(\tan^4 \frac{\pi}{12} - 1 \right) = 0 \implies \tan x = 0$$

$$x = 0, \pi, 2\pi, 3\pi, \dots, 99\pi$$

$$x = 0, \pi, 2\pi, 3\pi, \dots 99\pi$$
10.
$$\frac{S_n}{S_n - 1} = \frac{n}{n - 1} \frac{n + 1}{n + 2}$$

$$Q_n = \left(\frac{2}{1} \times \frac{3}{2} \times \frac{4}{3} \times \frac{5}{4} \times \dots \times \frac{n}{n-1}\right) \times \left(\frac{3}{4} \times \frac{4}{5} \times \frac{5}{6} \times \dots \times \frac{n}{n+1} \times \frac{n+1}{n+2}\right)$$

$$Q_n = \left(\frac{n}{1}\right) \cdot \left(\frac{3}{n+2}\right) = \frac{3n}{n+2}$$

$$\lim Q_n = 3$$

11.
$$\begin{vmatrix} \log l & p & 1 \\ \log m & q & 1 \\ \log n & r & 1 \end{vmatrix} = \begin{vmatrix} \log A + (p-1)\log R & p & 1 \\ \log A + (q-1)\log R & q & 1 \\ \log A + (r-1)\log R & r & 1 \end{vmatrix}$$

$$\begin{vmatrix} \log A & p & 1 \\ \log A & q & 1 \\ \log A & r & 1 \end{vmatrix} + \begin{vmatrix} (p-1)\log R & p & 1 \\ (q-1)\log R & q & 1 \\ (r-1)\log R & r & 1 \end{vmatrix} = 0$$

12. Numbers divisible by $6 \rightarrow 49$ Numbers divisible by $18 \rightarrow 16$

13.
$$\frac{y+z}{2} = \sqrt{yz}$$
 \Rightarrow $1-x \ge 2\sqrt{yz}$

Sequence and Series

189

Thus,
$$(1-x)(1-y)(1-z) \ge 2\sqrt{yz} \cdot 2\sqrt{zx} \cdot 2\sqrt{xy} = 8xyz$$

$$\Rightarrow \frac{xyz}{(1-x)(1-y)(1-z)} \le \frac{1}{8}$$

17. Clearly, both roots are lies in between -1 and 1.

$$\lim_{n \to \infty} \sum_{r=1}^{n} (\alpha^r + \beta^r) = \left(\lim_{n \to \infty} \sum_{r=1}^{n} \alpha^r\right) + \left(\lim_{n \to \infty} \sum_{r=1}^{n} \beta^r\right)$$

$$= \frac{\alpha}{1 - \alpha} + \frac{\beta}{1 - \beta} = \frac{1}{12}$$

18.
$$\sum \frac{a_i}{a_j} = \frac{a_1}{a_2} + \frac{a_1}{a_3} + \frac{a_1}{a_4} + \frac{a_2}{a_1} + \frac{a_2}{a_3} + \frac{a_2}{a_4} + \frac{a_3}{a_1} + \frac{a_3}{a_2} + \frac{a_3}{a_4} + \frac{a_4}{a_1} + \frac{a_4}{a_2} + \frac{a_4}{a_3}$$

$$\geq 12$$

$$\left(\because x + \frac{1}{x} \ge 2 \right)$$

19.
$$\frac{x^2 + 2xy + 2xy + 4y^2 + z^2 + z^2}{6} \ge \sqrt[6]{2^2 \cdot 4 \cdot x^4 \cdot y^4 \cdot z^4}$$

20. Let first term be 'a' and difference be d.

⇒
$$5(a+4d) = 8(a+7d)$$

⇒ $a+12d=0$
 $S_{25} = \frac{25}{2}[2a+24d]$
 $S_{25} = 25(a+12d) = 0$

$$S_{25} = 25(a + 12d) = 0$$
21.
$$10 \sin x = \sqrt{5} (4 \sin^2 x + 1) \qquad \sin x \neq 0$$

$$\Rightarrow \qquad \sin x = \frac{\sqrt{5} \pm 1}{4}$$

22. Let first term of G.P. be a and ratio be r.

Let first term of G.P. be a and radio be 7.

$$\Rightarrow \qquad a + ar + ar^2 = 70 \quad \text{and} \quad 10ar = 4a + 4ar^2$$

$$\Rightarrow \qquad a = 40 \qquad r = \frac{1}{2}$$

$$S = \frac{a}{1 - r} = \frac{40}{1 - \frac{1}{2}} = 80$$

23.
$$\sum_{n=1}^{\infty} \frac{k}{2^{n+k}} = \frac{k}{2^k} \sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{k}{2^k}$$
$$\sum_{k=1}^{\infty} \frac{k}{2^k} = \frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \frac{4}{2^4} + \dots = 2$$

24.
$$(pqr)^{1/3} \ge \frac{p+q+r}{3} \implies p=q=r$$

if $3p+4q+5r=12 \implies p=q=r=1$

25.
$$\frac{1}{3} \left(\frac{1}{3} + \frac{1}{6} + \frac{1}{10} + \frac{1}{15} + \frac{1}{21} + \dots \right) = \frac{1}{3} \left[\frac{1}{3} \left(1 + \frac{1}{2} \right) + \frac{1}{5} \left(\frac{1}{2} + \frac{1}{3} \right) + \frac{1}{7} \left(\frac{1}{3} + \frac{1}{4} \right) + \dots \right]$$

$$= \frac{1}{3} \left[\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots \right] = \frac{1}{3}$$

26.
$$\frac{\frac{a}{2}[2A+(a-1)D]}{a^2} = \frac{\frac{b}{2}[2A+(b-1)D]}{b^2} = c \implies D = 2c, A = c$$

27.
$$\frac{x/r}{1-r} = 4 \implies \frac{x}{4} = r - r^2$$

if
$$-1 < r < 1$$
 then $-2 < r - r^2 < \frac{1}{4}$ by $\frac{1}{4}$ by $\frac{1}{4$

$$-2 < \frac{x}{4} < \frac{1}{4} \Rightarrow -8 < x < 1$$

28.
$$t_1 + t_3 + t_5 + \dots + t_{2n+1} = \frac{n+1}{2} [2a + n(2d)] = 248$$

$$t_2 + t_4 + t_6 + \dots + t_{2n} = \frac{n}{2} [2(a+d) + (n-1)2d] = 217$$

$$t_{2n+1} - t_1 = 2n \cdot d = 56$$

$$t_{2n+1} - t_1 = 2n \cdot d = 56$$

$$\Rightarrow \frac{n+1}{2} [2a+56] = 248 \text{ and } \frac{n}{2} [2a+56] = 217$$

$$\Rightarrow$$
 $n=7, a=3$

29. length of side
$$A_1 = 20$$

length of side
$$A_1 = 20$$

length of side $A_2 = \frac{20}{\sqrt{2}}$
 $0 = (h \Sigma i + n) \cdot b = a_1 \cdot b$
 $(h \times i + n) \cdot b = a_2 \cdot b$
 $(h \times i + n) \cdot b = a_2 \cdot b$
 $(h \times i + n) \cdot b = a_2 \cdot b$

length of side
$$A_3 = \frac{20}{(\sqrt{2})^2}$$

length of side
$$A_3 = \frac{20}{(\sqrt{2})^2}$$

length of side $A_n = \frac{20}{(\sqrt{2})^{n-1}}$
 $A_n = \frac{20}{(\sqrt{2})^{n-1}}$

Area of
$$A_n = \frac{400}{2^{n-1}} < 1$$

30.
$$S_k = \sum_{i=0}^{\infty} \frac{1}{(k+1)^i} = 1 + \frac{1}{k+1} + \frac{1}{(k+1)^2} + \dots = \frac{k+1}{k}$$

$$\sum_{k=1}^{n} k S_k = \sum_{k=1}^{n} (k+1) = \sum_{k=1}^{n} k + \sum_{k=1}^{n} 1 = \frac{n(n+1)}{2} + n = \frac{n(n+3)}{2}$$

$$= (r^2 + 1) \text{ and } (r + 1) \text{ an$$

31.
$$T_r = \frac{(r^2+1)}{r(r+1)} \cdot 2^{r-1} = \left(1 + \frac{1}{r} - \frac{2}{r+1}\right) 2^{r-1}$$

$$S_n = \sum_{r=1}^n T_r = \sum_{r=1}^n 2^{r-1} + \sum_{r=1}^n \left(\frac{2^{r-1}}{r} - \frac{2^r}{r+1} \right) = (2^{n-1}) + \left[1 - \frac{2^n}{n+1} \right] = \left(\frac{n}{n+1} \right) 2^{n}$$

32.
$$\sum_{n=2}^{29} (1.5)^n = (1.5)^2 + (1.5)^3 + \dots + (1.5)^{29}$$

$$= (1.5)^{2} \left[\frac{(1.5)^{28} - 1}{0.5} \right] = 2k - 2(1.5)^{2}$$

33.
$$7, A_1, A_2, A_3, \dots, A_n, 49$$
 are in A.P.

$$A_1 + A_2 + A_3 + \dots + A_n = \left(\frac{n+2}{2}\right)(7+49) - (7+49)$$

 $\Rightarrow \frac{n}{2} \times 56 = 364 \Rightarrow n = 13$

34.
$$\frac{2}{r^2}$$
, $\frac{2}{r}$, 2, 2r, 2r²

35.
$$S_n = 5n^{2} + 4n$$

$$t_n = S_n - S_{n-1} = 10n - 1$$

36.
$$x^3 + y^3 = (x+y)(x^2 + y^2 - xy) = a \left[b - \left(\frac{a^2 - b}{2} \right) \right]$$

$$= \frac{3ab}{2} - \frac{a^3}{2}$$

37.
$$S_1 = \frac{1}{1 - \frac{2}{3}} = 3$$

$$S_2 = \frac{3}{3} = 5$$

$$S_2 = \frac{3}{1 - \frac{2}{5}} = 5$$

$$S_n = \frac{2n-1}{1-\frac{2}{2n+1}} = 2n+1$$

$$\frac{1}{S_1 S_2 S_3} + \frac{1}{S_2 S_3 S_4} + \frac{1}{S_3 S_4 S_5} + \dots = \frac{1}{3 \cdot 5 \cdot 7} + \frac{1}{5 \cdot 7 \cdot 9} + \frac{1}{7 \cdot 9 \cdot 11} + \dots$$

$$S_{\infty} = \sum_{r=1}^{\infty} t_r = \sum_{r=1}^{\infty} \frac{1}{(2r+1)(2r+3)(2r+5)} = \sum_{r=1}^{\infty} \left[\frac{1}{(2r+1)(2r+3)} - \frac{1}{(2r+3)(2r+5)} \right]$$

38.
$$ar^5$$
, 2, 5, ar^{13} are in G.P.

$$\Rightarrow (ar^9)^2 = 10$$

$$t_1 t_2 t_3 \dots t_{19} = a^{19} r^{9 \times 19} = (ar^9)^{19} = 10^{19/2}$$

$$A + \frac{1}{A} + 1 \ge 3; \quad B + \frac{1}{B} + 1 \ge 3; \quad C + \frac{1}{C} + 1 \ge 3; \quad D + \frac{1}{D} + 1 \ge 3$$
$$\left(A + \frac{1}{A} + 1\right)\left(B + \frac{1}{B} + 1\right)\left(C + \frac{1}{C} + 1\right)\left(D + \frac{1}{D} + 1\right) \ge 3^{4}$$

40.
$$(\Sigma r)^2 = \Sigma r^2 + 2 \Sigma r_1 r_2$$

 $\Sigma r_1 r_2 = \frac{a - b}{2}$

41.
$$\frac{2n}{2}[2a + (2n-1)d] = x$$
 and $\frac{n}{2}[2(a+2nd) + (n-1)d] = y$

$$\Rightarrow \frac{2y}{n} - \frac{x}{n} = 3nd \Rightarrow d = \frac{2y - x}{3n^2}$$

44. 2, 6, 2
$$(k-1)$$
 are in G.P.

$$\Rightarrow$$
 6² = 2 × 2(k-1)

$$\Rightarrow k=10$$

$$\Rightarrow x^2 - x - 6 > 0$$
 and $|x| < 100$

$$\Rightarrow x \in (-100, -2) \cup (3, 100)$$

Number of integers = 193

45.
$$\sum_{r=1}^{n} \sqrt{1 + T_r T_{r+1} T_{r+2} T_{r+3}} = \sum_{r=1}^{n} \sqrt{1 + \left(r - \frac{3}{2}\right) \left(r - \frac{1}{2}\right) \left(r + \frac{1}{2}\right) \left(r + \frac{3}{2}\right)}$$
$$= \sum_{r=1}^{n} \sqrt{\left(r^2 - \frac{5}{4}\right)^2} = \sum_{r=1}^{n} \left|r^2 - \frac{5}{4}\right|$$
$$= \sum_{r=1}^{2} \left|r^2 - \frac{5}{4}\right| + \sum_{r=2}^{n} \left|r^2 - \frac{5}{4}\right| = \frac{1}{4} + \sum_{r=2}^{n} r^2 - \sum_{r=2}^{n} \frac{5}{4}$$

46.
$$T_r = \sum T_r - \sum T_{r-1} = r^2 + r$$

$$\sum_{r=1}^n \frac{2008}{T_r} = 2008 \sum_{r=1}^n \frac{1}{r(r+1)} = (2008) \sum_{r=1}^n \left(\frac{1}{r} - \frac{1}{r+1}\right) = (2008) \frac{n}{n+1}$$

$$\lim_{h \to \infty} \frac{(2008) n}{n+1} = 2008$$

48.
$$P(x) = \sum_{r=1}^{n} \left(x - \frac{1}{r} \right) \left(x - \frac{1}{r+1} \right) \left(x - \frac{1}{r+2} \right)$$

Absolute term =
$$-\sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)} = -\frac{1}{2} \left[\sum_{r=1}^{n} \frac{1}{r(r+1)} - \frac{1}{(r+1)(r+2)} \right]$$

Sequence and Series

193

$$\lim_{n \to \infty} -\frac{1}{2} \left[\frac{1}{2} - \frac{1}{(n+1)(n+2)} \right]$$

$$\lim_{n \to \infty} -\frac{1}{2} \left[\frac{1}{2} - \frac{1}{(n+1)(n+2)} \right] = -\frac{1}{4}$$
50. $\frac{1}{T_1}, \frac{1}{T_2}, \frac{1}{T_3}, \dots, \frac{1}{T_k}$ are in A.P.
$$\frac{T_2}{T_6} = \frac{\frac{1}{a} + 5d}{\frac{1}{a} + d} = 9 \implies d = -\frac{2}{a}$$

$$\frac{T_{10}}{T_4} = \frac{\frac{1}{a} + 3d}{\frac{1}{a} + 9d} = \frac{5}{17}$$

52.
$$\left(1+\frac{1}{3^2}+\frac{1}{3^4}+\ldots\right)+\frac{2}{3}\left(1+\frac{1}{3^2}+\frac{1}{3^4}+\ldots\right)=\frac{15}{8}$$

53.
$$(x-1)(x-2)(x-3)(x-4)....(x-10)$$

53.
$$(x-1)(x-2)(x-3)(x-4).....(x-10)$$

Coefficient of $x^8 = \text{sum of terms taken two at a time}$

$$= \frac{1}{2}[(1+2+3+.....+10)^2 - (1^2+2^2+.....+10^2)]$$

55.
$$AM = GM$$

$$\frac{\alpha + \beta + \gamma + \delta}{4} = (\alpha \beta \gamma \delta)^{1/4} = \frac{1}{2}$$

$$\Rightarrow \qquad \alpha = \beta = \gamma = \delta = \frac{1}{2}$$

$$\Rightarrow \qquad \alpha = \beta = \gamma = \delta = \frac{1}{2}$$
56. Use AM \geq GM
$$57. \sum_{r=1}^{\infty} (\alpha^r + \beta^r) = (\alpha + \alpha^2 + \alpha^3 + ...) + (\beta + \beta^2 + \beta^3 + ...)$$

$$= \frac{\alpha}{1 - \alpha} + \frac{\beta}{1 - \beta}$$

$$A = \frac{\alpha}{1 - \beta} + \frac{\beta}{1 - \beta}$$

$$4x^{2} + 2x - 1 = 0 \stackrel{\alpha}{\searrow} \frac{\alpha}{\beta}$$

$$4\left(\frac{x}{1+x}\right)^{2} + 2\left(\frac{x}{1+x}\right) - 1 = 0 \Rightarrow 5x^{2} - 1 = 0 \stackrel{\alpha}{\searrow} \frac{\alpha}{1-\alpha}$$

194

58.
$$2^{2}[1+2^{3}+3^{3}+4^{3}+...+10^{3}]=4\left[\frac{10\times11}{2}\right]^{2}=12100$$

59. AM ≥ HM

$$\frac{AM \ge HM}{b + \frac{a}{2} + \frac{a}{2}} \ge \frac{3}{\frac{4}{a} + \frac{1}{b}}$$

60.
$$4^x - 15 = 4^{2-x} \implies 4^x = 16 \implies x = 2$$

Common ratio = $\cos\left(\frac{2011\pi}{3}\right) = \cos\left(670\pi + \frac{\pi}{3}\right) = \frac{1}{2}$

61. AM ≥ GM

$$\frac{a^4 + b^4 + \frac{c^2}{2} + \frac{c^2}{2}}{4} \ge \left(\frac{a^4 b^4 c^4}{4}\right)^{1/4}$$

$$x^2 + y^2 = x^2 + \frac{1}{x^2} \ge 2$$

62.
$$x^2 + y^2 = x^2 + \frac{1}{x^2} \ge 2$$

63.
$$\frac{2}{1^{3}} + \frac{6}{1^{3} + 2^{3}} + \frac{12}{1^{3} + 2^{3} + 3^{3}} + \frac{20}{1^{3} + 2^{3} + 3^{3} + 4^{3}} + \dots \infty$$

$$= \frac{1 \times 2}{1^{3}} + \frac{2 \times 3}{1^{3} + 2^{3}} + \frac{3 \times 4}{1^{3} + 2^{3} + 3^{3}} + \dots \infty$$

$$= \lim_{n \to \infty} \sum_{1}^{n} \frac{n(n+1)}{1^{3} + 2^{3} + \dots + n^{3}} = \lim_{n \to \infty} \sum_{1}^{n} \frac{n(n+1)}{\left(\frac{n(n+1)}{2}\right)^{2}}$$

$$= \lim_{n \to \infty} 4 \sum_{1}^{n} \frac{1}{n(n+1)} = 4 \lim_{n \to \infty} \sum_{1}^{n} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= 4 \lim_{n \to \infty} \left(\frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1}\right)$$

$$= 4 \lim_{n \to \infty} \frac{n}{n+1} = 4$$

64.
$$\frac{1}{(k-1)} \sum_{n=1}^{\infty} \left(\frac{1}{(n+1)(n+2)\dots(n+k-1)} - \frac{1}{(n+2)(n+3)\dots(n+k)} \right) = \frac{1}{(k-1)} \left(\frac{1}{2 \cdot 3 \cdot 4 \dots k} \right)$$

65.
$$A-G=\frac{3}{2}$$
 and $G-H=\frac{6}{5}$

As we know,

$$G = \frac{3}{2}$$
 and $G - H = \frac{6}{5}$
we know,
 $G^2 = AH \implies G^2 \left(\frac{3}{2} + G\right) \left(G - \frac{6}{5}\right) \implies G = 6$ and $A = \frac{15}{2}$

Sequence and Series

195

$$ab = 36 \text{ and } a + b = 15 \Rightarrow a = 12 \text{ and } b = 3$$

$$66. \ S = \frac{2+5}{2^2 \cdot 5^2} + \frac{5+8}{5^2 \cdot 8^2} + \frac{8+11}{8^2 \cdot 11^2} + \dots = \frac{1}{3} \left(\frac{5^2 - 2^2}{2^2 \cdot 5^2} + \frac{8^2 - 5^2}{5^2 \cdot 8^2} + \frac{11^2 - 8^2}{8^2 \cdot 11^2} + \dots \right)$$

$$= \frac{1}{3} \left(\frac{1}{2^2} - \frac{1}{5^2} + \frac{1}{5^2} - \frac{1}{8^2} + \frac{1}{8^2} - \frac{1}{11^2} + \dots + \frac{1}{29^2} - \frac{1}{32^2} \right)$$

$$= \frac{1}{3} \left(\frac{1}{4} - \frac{1}{32^2} \right) = \frac{85}{1024}$$

$$67. \ \sum_{r=1}^{10} \frac{r}{(r^2 - 1)^2 - r^2} = \sum_{r=1}^{10} \frac{r}{(r^2 - r - 1)(r^2 + r - 1)}$$

$$= \frac{1}{2} \sum_{r=1}^{10} \left(\frac{1}{r^2 - r - 1} - \frac{1}{r^2 + r - 1} \right)$$

$$68. \ \sum_{r=1}^{\infty} t_r = \sum_{r=1}^{\infty} \frac{r}{r^4 + r^2 + 1}$$

$$= \sum_{r=1}^{\infty} \frac{r}{(r^2 + 1)^2 - r^2} = \sum_{r=1}^{\infty} \frac{r}{(r^2 - r + 1)(r^2 + r + 1)}$$

$$1 \ \sum_{r=1}^{\infty} \left(1 \right)$$

$$= \sum_{r=1}^{\infty} \frac{r}{(r^2+1)^2 - r^2} = \sum_{r=1}^{\infty} \frac{r}{(r^2-r+1)(r^2+r+1)}$$

$$= \frac{1}{2} \sum_{r=1}^{\infty} \left(\frac{1}{r^2-r+1} - \frac{1}{r^2+r+1} \right)$$

$$S_{\infty} = 1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \dots$$

$$\frac{1}{5} \cdot S_{\infty} = \frac{1}{5} + \frac{4}{5^2} + \frac{7}{5^3} + \dots$$

$$\Rightarrow \frac{4}{5} S_{\infty} = 1 + \frac{3}{5} + \frac{3}{5^2} + \frac{3}{5^3} + \dots = \frac{7}{4}$$

$$\Rightarrow S_{\infty} = \frac{35}{16}$$

71.
$$x_1, x_2, x_3 \dots x_{2n}$$

$$\sum_{r=1}^{2n} (-1)^{r+1} x_r^2$$

$$x_1^2 - x_2^2 + x_3^2 + \dots - x_{2n}^2$$

$$(x_1 - x_2)(x_1 + x_2 + x_3 + \dots x_{2n})$$

$$-(x_2 - x_1)(x_1 + x_2 + x_3 + \dots x_{2n})$$

$$-\frac{(x_{2n} - x_1)}{2n - 1} \frac{2x}{2} [x_1 + x_{2n}]$$

$$\frac{x}{2x - 1} (x_1^2 - x_{2n}^2)$$

196

Solution of Advanced Problems in Mathematics for JEE

72.
$$\frac{\alpha+\beta}{2}=9$$
; $\sqrt{\alpha\beta}=4$

$$\sqrt{\frac{p^2+q^2}{2}} \ge \frac{p+q}{2}$$

74.
$$150 \times 9 + \frac{n}{2} [300 + (n-1)(-2)] = 4500 \Rightarrow n = 25$$

Total term = n + 9 = 34

75.
$$S_{20} = \frac{20}{2} [2(1-ad) + 19d] = 20$$

$$19d - 2ad = 0$$

$$\Rightarrow 19d - 2ad = 0$$
76.
$$\sum_{n=3}^{\infty} \frac{1}{(n-2)(n-1)n(n+1)(n+2)} = \frac{1}{4} \sum_{n=3}^{\infty} \left(\frac{1}{(n-2)(n-1)n(n+1)} - \frac{1}{(n-1)n(n+1)(n+2)} \right)$$

78.
$$2^x + 2^{2x+1} + \frac{5}{2^x} = 2^x + 2^{2x} + 2^{2x} + \frac{1}{2^x} + \frac{1}{2^x} + \frac{1}{2^x} + \frac{1}{2^x} + \frac{1}{2^x}$$

$$\Rightarrow \frac{2^{x} + 2^{2x+1} + (5/2^{x})}{8} \ge \left(2^{x} \times (2^{2x})^{2} \times \frac{1}{(2^{x})^{5}}\right)^{1/8} = 1$$

$$\Rightarrow \qquad 2^x + 2^{2x+1} + \frac{5}{2^x} \ge 8$$

79.
$$\sum_{r=1}^{\infty} \left(\frac{(4r+5)}{r(5r+5)} \right) \cdot \frac{1}{5^r} = \sum_{r=1}^{\infty} \left(\frac{1}{r} - \frac{1}{5r+5} \right) \cdot \frac{1}{5^r} = \sum_{r=1}^{\infty} \left(\frac{1}{r \cdot 5^r} - \frac{1}{(r+1) \cdot 5^{r+1}} \right) = \frac{1}{5}$$

Exercise-2: One or More than One Answer is/are Correct

1.
$$a = \frac{a_1 + a_n}{2}$$
, $b = \sqrt{a_1 a_n}$, $c = \frac{2a_1 a_n}{a_1 + a_n}$

$$\Rightarrow a \ge b \ge c \text{ and } b^2 = ac$$

2.
$$D_1: b^2 - 4ac < 0$$

$$D_2: c^2 - 4ab < 0$$

$$D_3: a^2 - 4bc < 0$$

$$D_1 + D_2 + D_3$$
: $a^2 + b^2 + c^2 < 4(ab + bc + ac)$

$$1 < \frac{a^2 + b^2 + c^2}{ab + bc + ac} < 4$$

3. If a, b, c are in H.P.

A.M. > H.M.

$$\Rightarrow \frac{a+c}{2} > b \Rightarrow a+c > 2b$$

$$\Rightarrow a-b>b-c$$

or
$$\frac{1}{a-b} - \frac{1}{b-c} < 0$$

G.M. > H.M.

also
$$\sqrt{ac} > b$$
 or $ac > b^2$

4.
$$T_p = a + (p-1) d = \frac{1}{q(p+q)}$$

$$T_q = a + (q-1) d = \frac{1}{p(p+q)} \implies a = d = \frac{1}{pq(p+q)}$$

5. (a)
$$a, H_1, H_2, H_3, \dots, H_n, b$$
 are in H.P.

$$\frac{1}{a}, \frac{1}{H_1}, \frac{1}{H_2}, \frac{1}{H_3}, \dots, \frac{1}{H_n}, \frac{1}{b}$$
 are in A.P.

$$\Rightarrow \frac{1}{H_1} + \frac{1}{H_2} + \frac{1}{H_3} + \dots + \frac{1}{H_n} = \frac{n}{2} \left(\frac{1}{a} + \frac{1}{b} \right)$$

(c)
$$a, A_1, A_2, A_3, \dots, A_{2n}, b$$
 are in A.P.

$$A_1 + A_{2n} = A_2 + A_{2n-1} = A_3 + A_{2n-2} = \dots = a + b$$

(d)
$$4g_2 + 5g_3 = 4r + 5r^2$$

This is minimum at
$$r = -\frac{2}{5}$$

6. a, b, c are in H.P.

$$\frac{1}{a}$$
, $\frac{1}{b}$, $\frac{1}{c}$ are in A.P.

(a)
$$\frac{a+b+c}{a} - 2, \frac{a+b+c}{b} - 2, \frac{a+b+c}{c} - 2$$
 are in A.P.

(b)
$$\frac{a+b+c}{c} - 1, \frac{a+b+c}{b} - 1, \frac{a+b+c}{c} - 1$$
 are in A.P.

(c)
$$\frac{2}{b} = \frac{1}{a} + \frac{1}{c} \ge \frac{2}{\sqrt{ac}} \implies \sqrt{ac} \ge b$$

$$a^5 + c^5 \ge 2 (ac)^{5/2} \ge b^5$$

(d)
$$2ac = ab + bc$$

7. Let the roots be a, ar, ar^2 , ar^3 and ar^4 .

198

and

$$\frac{1}{r^{5}} = \frac{\left(\frac{1}{r^{5}} - 1\right)}{\frac{1}{r} - 1} = 10$$

put
$$\frac{r^5 - 1}{r - 1} = \frac{40}{a}$$
 in (2) we get $ar^2 = \pm 2$

Now,
$$\delta = (ar^2)^5 = (\pm 2)^5$$

8. (a) : $2a_{k+1} = a_k + a_{k+2}$

$$f_k(-1) = 0$$
-1 is a root.

Other is also real root.

- (b) From (a) (-1) is root for any 'k' so any pair of equation has a common root.
- (c) If one root is -1, other roots are -c/a (form)

$$\frac{a_{k+2}}{a_k}$$
 i.e., $\frac{a_3}{a_1}, \frac{a_4}{a_2}, \frac{a_5}{a_3}$ are not in A.P.

9.
$$b = \frac{a+c}{2}$$
, $d = \frac{2ce}{c+e}$

if
$$c^2 = bd$$
, then $c^2 = 36$

$$(:: a = 2, e = 18)$$

10. If *a*, *b*, *c* are in A.P. then

$$a = b - d$$
 and $c = b + d$

$$a+b+c=60 \Rightarrow b=20$$

If (a-2), b, (c+3) are in G.P., then

$$400 = (18 - d)(23 + d) \Rightarrow d = 2, -7$$

12.
$$\frac{81 + 144a^4 + 16b^4 + 9c^4}{4} \ge 36abc$$

$$\Rightarrow$$
 A.M. = G.M.

$$\Rightarrow 81 = 144a^4 = 16b^4 = 9c^4$$

13. x, y, z A.P.

Let
$$x = y - \theta$$
 and $z = y + \theta$

Let
$$x = y - \theta$$
 and $z = y + \theta$

$$\cos(y - \theta) + \cos y + \cos(y + \theta) = 1 = \frac{\sin \frac{3\theta}{2}}{\sin \frac{\theta}{2}} \cdot \cos(y)$$

Sequence and Series

199

$$\sin(y-\theta) + \sin y + \sin(y+\theta) = \frac{1}{\sqrt{2}} = \frac{\sin\frac{3\theta}{2}}{\sin\frac{\theta}{2}} \cdot \sin(y) \Rightarrow \cot y = \sqrt{2}$$

$$\frac{\sin\frac{3\theta}{2}}{\sin\frac{\theta}{2}} = \sqrt{\frac{3}{2}} = 3 - 4\sin^2\frac{\theta}{2} \Rightarrow \cos\theta = \frac{\sqrt{3} - \sqrt{2}}{2\sqrt{2}}$$

15.
$$\frac{10^{n+1} + 1}{10^{n+2} + 1} < \frac{10^{m+1} + 1}{10^{m+2} + 1}$$

$$\Rightarrow 10^{n+1} \cdot 10^{m+2} + 10^{n+1} + 10^{m+2} + 1 < 10^{n+2} \cdot 10^{m+1} + 10^{n+2} + 10^{m+1} + 1$$

$$\Rightarrow 10^{m+1} < 10^{n+1}$$

16.
$$S_r = \sqrt{r + S_r} \implies S_r^2 - S_r = r$$

18.
$$S_n = S_n \sum_{r=1}^n t_r = \sum_{r=1}^n \frac{2r+1}{1^2+2^2+3^2+\ldots+r^2} = \sum_{r=1}^n 6\left(\frac{1}{r} - \frac{1}{r+1}\right) = 6\left(1 - \frac{1}{n+1}\right)$$

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

Sol.
$$T_1 = A + B = 0$$
 $\Rightarrow A = -B$
 $T_2 = A\alpha + B\beta = 1$ $\Rightarrow A(\alpha - \beta) = 1$
 $T_3 = A\alpha^2 + B\beta^2 = 1$ $\Rightarrow A(\alpha^2 - \beta^2) = 1$
 $T_4 = A\alpha^3 + B\beta^3 = 2$ $\Rightarrow A(\alpha^3 - \beta^3) = 2$
 $\Rightarrow \alpha + \beta = 1$ and $\alpha\beta = -1$

Paragraph for Question Nos. 3 to 4

Sol. Set A:
$$5-D,5,5+D$$
 and
Set B: $5-d,5,5+d$

$$\frac{p}{q} = \frac{25-D^2}{25-d^2} = \frac{7}{8}$$

$$\Rightarrow 25 = 8D^2 - 7d^2 = d^2 + 16d + 8$$

$$\Rightarrow d = 1 \text{ and } D = 2$$
Set A $\{3,5,7\}$ and set B $\{4,5,6\}$

Paragraph for Question Nos. 5 to 7

5.
$$\frac{(x-3)+(y+1)+(z+5)}{3} \ge [(x-3)(y+1)(z+5)]^{1/3}$$
$$\Rightarrow (x-3)(y+1)(z+5) \le (21)^3$$

6. Term is
$$6(x-3)\left(y+\frac{1}{2}\right)\left(z+\frac{5}{3}\right) \Rightarrow \frac{(x-3)+y+\frac{1}{2}+z+\frac{5}{3}}{3} \ge \left[(x-3)\left(y+\frac{1}{2}\right)\left(z+\frac{5}{3}\right)\right]^{1/3}$$

$$(x-3)\left(y+\frac{1}{2}\right)\left(z+\frac{5}{3}\right) \le \frac{(355)^3}{6^3 \times 3^3}$$
Maximum value $=\frac{(355)^3}{6^2 \times 3^3}$

7.
$$\frac{x+y+z}{3} \ge (xyz)^{1/3}$$
; $xyz \le (20)^3$

Paragraph for Question Nos. 8 to 10

Sol. Let removed number are A and A + 1.

$$\frac{n(n+1)}{2} - 2A - 1 = (n-2)\frac{105}{4}$$

$$2n^2 - 103n + 206 = 8A$$

$$n = 50, A = 7$$

Paragraph for Question Nos. 11 to 13

Sol.
$$a_{n+1} - 1 = (a_n - 1)^2$$

 $a_n - 1 = (a_{n-1} - 1)^2$
 $a_{n-1} - 1 = (a_{n-2} - 1)^2$
 $(a_2 - 1) = (a_1 - 1)^2$
 $a_1 - 1 = (a_0 - 1)^2$
 $\Rightarrow (a_n - 1)(a_{n-1} - 1)^2(a_{n-2} - 1)^{2^2}.....(a_1 - 1)^{2^{n-1}} = (a_{n-1} - 1)^2(a_{n-2} - 1)^2.....(a_0 - 1)^{2^n}$
 $\Rightarrow (a_n - 1) = 3^{2^n}$
 $b_n = \frac{2 \cdot (3^{2^0} + 1)(3^2 + 1).....(3^{2^{n-1}} + 1)}{(3^{2^n} + 1)}$
 $b_n = \frac{3^{2^n} - 1}{3^{2^n} + 1}$

Paragraph for Question Nos. 14 to 15

$$f(n) = \sum_{r=2}^{n} \frac{4}{(r-1)\,r(r+1)} = 2\sum_{r=2}^{n} \left(\frac{1}{(r-1)\,r} - \frac{1}{r(r+1)}\right) = 2\left(\frac{1}{1\cdot 2} - \frac{1}{n\,(n+1)}\right); a = \lim_{n\to\infty} f(n) = 1$$

14.
$$f(7) + f(8) = \frac{122}{63}$$

15.
$$x^2 + \frac{3}{2}x + t = 0 < \frac{\alpha}{\beta}$$

Paragraph for Question Nos. 16 to 17

Sol.
$$\frac{a_1}{a_1+1} = \frac{a_2}{a_2+3} = \frac{a_3}{a_3+5} = \dots = \frac{a_{1005}}{a_{1005}+2009} = \frac{1}{k}$$

 $a_1 = \frac{1}{k-1}, a_2 = \frac{3}{k-1}, a_3 = \frac{5}{k-1}, \dots = \frac{2009}{k-1}$
 $a_1 + a_2 + a_3 + \dots + a_{1005} = \frac{(1005)^2}{k-1} = 2010 \implies k-1 = \frac{1005}{2}$

Exercise-4: Matching Type Problems

1. (A) a, b, c are in A.P.

$$b-a=c-b$$

b-a, c-b, a are in G.P.

$$\frac{c-b}{b-a} = \frac{a}{c-b} \implies c-b = a \quad (\because b-a = c-b)$$

(B) a, x, b are in A.P. $x = \frac{a+b}{2}$

$$x = \frac{a+b}{2}$$

a, y, z, b are in G.P.

$$y = a^{2/3}b^{1/3}, z = a^{1/3}b^{2/3}$$

(C) $a, b = ar, c = ar^2$

If
$$c > 4b - 3a$$

$$r^2 - 4r + 3 > 0$$

$$(r-3)(r-1)>0$$

(D)
$$7x^2 - 8x + 9 < 0$$

$$a=7>0$$
, $D=64-252<0$

No solution

2. (A)
$$a+d=b+c=20$$

(B)
$$2, G_1, G_2, G_3, G_4, G_5, G_6, 5$$
 are in G.P.
 $G_1G_6 = G_2G_5 = G_3G_4 = 10$

(C)
$$a_4h_7 = a_1h_{10} = a_{10}h_1 = 6$$

(D)
$$(2^x - 5)^2 = 2\left(2^x - \frac{7}{2}\right) \Rightarrow (2^x - 8)(2^x - 4) = 0 \Rightarrow x = 3$$

3. (A)
$$2 \cdot 2^{x^2} = 2^x + 2^{x^3}$$

Exponential series can't be in A.P.

(B) If
$$a_1, a_2, a_3, \ldots, a_n$$
 are in A.P. Observed to the superior

$$a_{2} - a_{1} = a_{3} - a_{2} = a_{4} - a_{3} = \dots = a_{n} - a_{n-1} = d$$

$$S = -d \left(\frac{1}{\sqrt{a_{1}} + \sqrt{a_{2}}} + \frac{1}{\sqrt{a_{2}} + \sqrt{a_{3}}} + \dots + \frac{1}{\sqrt{a_{n-1}} + \sqrt{a_{n}}} \right)$$

$$= -d \left(\frac{\sqrt{a_{n}} - \sqrt{a_{1}}}{d} \right) = \sqrt{a_{1}} - \sqrt{a_{n}}$$

(C)
$$\frac{S_{2n}}{S_n} = \frac{\frac{2n}{2}[2a + (2n-1)d]}{\frac{n}{2}[2a + (n-1)d]} = 3$$

$$\Rightarrow 2a = (n+1)d$$

$$S_{3n} = \frac{3n}{2}[2a + (3n-1)d]$$

$$\Rightarrow$$
 $2a = (n+1)d$

$$\frac{S_{3n}}{2S_n} = \frac{\frac{3n}{2}[2a + (3n - 1)d]}{\frac{2n}{2}[2a + (n - 1)d]} = 3$$

(D)
$$\frac{t_1 + t_5 = t_2 + t_4 = 2t_3}{4(t_1 - t_2 - t_4) + 6t_3 + t_5} = \frac{3t_1 + (t_1 + t_5) - 4(t_2 + t_4) + 3(2t_3)}{3t_1} = 1$$

4.
$$A \rightarrow Q$$
; $B \rightarrow P$; $C \rightarrow T$; $D \rightarrow S$

5. (A)
$$\frac{1}{3}\log_2 x + \log_2 y = 5$$
 and $\frac{1}{3}\log_2 y + \log_2 x = 7$

$$\Rightarrow \log_2 x = 6 \text{ and } \log_2 y = 3$$

$$\Rightarrow$$
 $x=2^6$ and $y=2^3$

(B)
$$\angle B = 60^{\circ}$$
 and $b^2 = ac$

$$\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{1}{2} \implies a^2 + c^2 = 2ac$$

$$\Rightarrow a = c$$

$$\Rightarrow a = a$$

[2k(s+2)(k-4)(k+6)-k] spik(k+2)n

$$\frac{\frac{b}{a} + \frac{c}{a} + \frac{a}{b} + \frac{c}{b} + \frac{a}{c} + \frac{b}{c}}{6} \ge 1$$

(D)
$$(b+c)^2 - a^2 = \lambda bc$$

$$\Rightarrow b^2 + c^2 - a^2 = (\lambda - 2) bc$$

$$\Rightarrow \frac{b^2 + c^2 - a^2}{2bc} = \frac{\lambda - 2}{2}$$
$$-1 < \frac{\lambda - 2}{2} < 1$$

6.
$$P(n) \cdot (f(n+2) - f(n)) = q(n)$$

$$P(n)\cdot\left(\frac{1}{n+1}+\frac{1}{n+2}\right)=q(n)$$

$$P(n) \cdot (2n+3) = (n^2 + 3n + 2) \cdot q(n)$$

$$\Rightarrow$$
 $P(n) = n^2 + 3n + 2$ and $q(n) = (2n + 3)$

Exercise-5: Subjective Type Problems

1. If a, b, c, d are in A.P. with common difference 'k', then

$$9k^3 + (x-4)k^2 + 4k = 0$$

$$k\{9k^2+(x-4)k+4\}=0$$

$$D \ge 0 \implies (x-4)^2 - 144 \ge 0^2$$

$$(x+8)(x-16) \ge 0$$

$$(x+8)(x-16) \ge 0$$

$$\Rightarrow x \in (-\infty, -8] \cup [16, \infty)$$
2. $S = 1 \cdot 2 + 2 \cdot 2^2 + 3 \cdot 2^3 + 4 \cdot 2^4 + \dots + n \cdot 2^n$

$$2 \cdot S = 1 \cdot 2^{2} + 2 \cdot 2^{3} + 3 \cdot 2^{4} + \dots + (n-1) \cdot 2^{n} + n \cdot 2^{n+1}$$

$$\Rightarrow S = (n-1) \cdot 2^{n+1} + 2 = 2 + 2^{n+10}$$

$$\Rightarrow \qquad 2(n-1)=2^{10}$$

3.
$$\lim_{n\to\infty}\sum_{r=1}^n\frac{r+2}{2^{r+1}r(r+1)}=\sum_{r=1}^\infty\left[\frac{1}{r\cdot 2^r}-\frac{1}{(r+1)\cdot 2^{r+1}}\right]=\frac{1}{2}$$

3.
$$\lim_{n \to \infty} \sum_{r=1}^{n} \frac{r+2}{2^{r+1}r(r+1)} = \sum_{r=1}^{\infty} \left[\frac{1}{r \cdot 2^{r}} - \frac{1}{(r+1) \cdot 2^{r+1}} \right] = \frac{1}{2}$$
4.
$$\sum_{r=1}^{\infty} \frac{8r}{4r^{4}+1} = 2 \sum_{r=1}^{\infty} \left(\frac{1}{2r^{2}-2r+1} - \frac{1}{2r^{2}+2r+1} \right) = 2$$

204

5. Let three terms in A.P. a-d, a, a+dIf $(a-d)^2$, a^2 , $(a+d)^2$ are in G.P. $\Rightarrow d=\pm\sqrt{2}a$

$$r = \frac{a^2}{(a-d)^2} = \frac{1}{(1\pm\sqrt{2})^2}$$

$$(a-d)^{2} \quad (1\pm\sqrt{2})^{2}$$
6. $\sqrt{\frac{10^{2n}-1}{9}} - 2\left(\frac{10^{n}-1}{9}\right) = P\left(\frac{10^{n}-1}{9}\right) \implies P=3$
7. $a-d, a, a+d, a-d+30$

If last three terms are in G.P.

$$(a+d)^2 = a(a-d+30)$$

$$\Rightarrow \qquad a = \frac{d^2}{30 - 3d}$$

8.
$$\frac{1}{8n^4} \sum_{k=1}^{n} [k(k+2)(k+4)(k+6) - (k-2)k(k+2)(k+4)]$$

$$\frac{1}{8} \left[\frac{(n-1)(n+1)(n+3)(n+5) + n(n+2)(n+4)(n+6) + 15}{n^4} \right] = \frac{1}{4} (n \to \infty)$$

9. Unit digit of
$$\left[\frac{n(n+1)}{2}\right]^2 = 1$$

Then unit digit of $\frac{n(n+1)}{2}$ is 1 because unit digit of n(n+1) can not be 8.

10. $2\log_b c = \log_c a + \log_a b$

$$2\left(\frac{\log a + 2\log r}{\log a + \log r}\right) = \left(\frac{\log a}{\log a + 2\log r}\right) + \left(\frac{\log a + \log r}{\log a}\right)$$

Let $A = \log a$ and $R = \log r \Rightarrow 3A^2 + 3Ar - 2R^2 = 0 \Rightarrow \frac{A}{R} = \frac{-3 + \sqrt{33}}{4}$

$$d = \log_b c - \log_c a = \frac{A + 2R}{A + R} - \frac{A}{A + 2R} = \frac{3}{2}$$

11. 3,
$$\frac{3}{r}$$
, $\frac{3r}{s}$, 7s; $\frac{2}{r} = 1 + \frac{r}{s}$ and $\frac{6r}{s} = \frac{3}{r} + 7s$

$$\Rightarrow 7r^3 - 6r^2 + 21r - 18 = 0 \Rightarrow (r^2 + 3)(7r - 6) = 0$$

$$\Rightarrow r = \frac{6}{7} \text{ and } s = \frac{9}{14}$$

$$S = \frac{1^2}{3^1} + \frac{2^2}{3^2} + \frac{3^2}{3^3} + \frac{4^2}{3^4} + \dots$$

12.
$$S = \frac{1^2}{3^1} + \frac{2^2}{3^2} + \frac{3^2}{3^3} + \frac{4^2}{3^4} + \dots$$
$$\frac{S}{3} = \frac{1^2}{3^2} + \frac{2^2}{3^3} + \frac{3^2}{3^4} + \dots$$

$$\frac{2S}{3} = S - \frac{S}{3} = \frac{1}{3} + \frac{3}{3^2} + \frac{5}{3^3} + \frac{7}{3^4} + \dots$$

$$\frac{2S}{9} = \frac{1}{3^2} + \frac{3}{3^3} + \frac{5}{3^4} + \dots$$

$$\frac{2S}{3} - \frac{2S}{9} = \frac{1}{3} + \frac{2}{3^2} + \frac{2}{3^3} + \frac{2}{3^4} + \dots$$

$$\frac{4S}{9} = \frac{1}{3} + \frac{2}{3^2} \left(1 + \frac{1}{3} + \frac{1}{3^2} + \dots \right)$$

$$\frac{4S}{9} = \frac{1}{3} + \frac{2}{9} \left(\frac{1}{2/3} \right) = \frac{2}{3} \implies S = \frac{3}{2} = \frac{p}{q}$$

13.
$$S_{\infty} = f(x)_{\text{max}}$$
 $x \in [-4, 3]$
 $a - ar = f'(0) = 3$
 $f'(x) = 3x^2 + 3 > 0$ $\therefore f(x)_{\text{max}} = f(3) = 27 + 9 - 9 = 27$
 $S_{\infty} = 27 = \frac{a}{1 - r}$

$$S_{\infty} = 27 = \frac{a}{1-r}$$

$$a(1-r) = 3 \implies \frac{1}{1-r} = \frac{a}{3}$$

$$\therefore 27 = a \left(\frac{a}{3}\right)$$

$$a^2 = 81 \implies a = \pm 9$$

$$a^{2} = 81 \implies a = \pm 9$$
If $a = 9$

$$1 - r = \frac{3}{9}$$
If $a = -9$

$$1 - r = -\frac{1}{3}$$

$$r = \frac{2}{3}$$

$$r = \frac{4}{3} > 1 \text{ (rejected)}$$

$$\therefore \quad \frac{p}{q} = \frac{2}{3} \qquad \therefore \quad p + q = 5$$

14. Total runs from 1 to 9 = 1350

Let, number of terms in A.P. be n.

$$\Rightarrow \frac{n}{2}[300 + (n-1) \times (-1)] = 4500 - 1350 = 3150$$

$$\Rightarrow$$
 $n = 25$ or 126, $n = 126$ (not possible)

$$\Rightarrow$$
 $n = 25$, total matches = 34

15.
$$x = \frac{10}{4} \sum_{n=3}^{100} \left(\frac{1}{n-2} - \frac{1}{n+2} \right) = \frac{10}{4} \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} - \frac{1}{102} - \frac{1}{101} - \frac{1}{100} - \frac{1}{99} \right)$$

Solution of Advanced Problems in Mathematics for JEE

16.
$$f(n) = \frac{(2n+1) + (2n-1) + \sqrt{(2n+1)(2n-1)}}{\sqrt{2n+1} + \sqrt{2n-1}}$$

Let
$$\sqrt{2n+1} = a$$
 and $\sqrt{2n-1} = b$

$$f(n) = \frac{(a^2 + b^2 + ab)}{(a+b)} \frac{(a-b)}{(a-b)} = \frac{a^3 - b^3}{a^2 - b^2}$$

$$\Rightarrow f(n) = \frac{(2n+1)^{3/2} - (2n-1)^{3/2}}{2}$$

$$\sum_{n=1}^{60} f(n) = \sum_{n=1}^{60} \frac{(2n+1)^{3/2} - (2n-1)^{3/2}}{2} = \frac{(121)^{3/2} - 1}{2} = 665$$

17.
$$3^{0}\{2^{0}+2^{-1}+2^{-2}...\infty\}=1\{2\}$$

$$3^{-1}\{2^0+2^{-1}+2^{-2}...\infty\}=\frac{1}{3}\{2\}$$

$$3^{-2}\{2^0+2^{-1}+2^{-2}...\infty\} = \frac{1}{3}\{2\}$$

.

Hence,
$$\frac{2 \times 1}{1 - \frac{1}{3}} = 3$$

18.
$$15^2 + (15+d)^2 + (15+2d)^2 + ... + (15+9d)^2 = 1185$$

$$\Rightarrow 19d^2 + 90d + 71 = 0$$

$$S_n \geq S_{n-1}$$

$$\frac{n}{2}(31-n) \ge \left(\frac{n-1}{2}\right)(32-n) \Rightarrow n \le 16$$

19.
$$24x^3 - 14x^2 + kx + 3 = 0$$

Product of roots $a^3 = -\frac{1}{8} \implies a = -\frac{1}{2}$

$$\Rightarrow k = -7$$

If x = 7 lies between the roots, then

$$f(7) = 49 + 7\alpha^2 - 112 < 0$$

$$\alpha^2 - 9 < 0$$

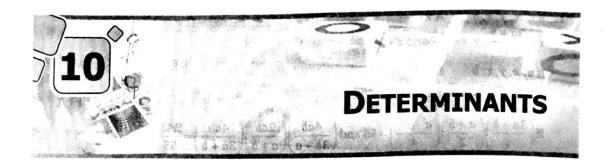
20.
$$9x^3 + 3y^3 + 1 = 9xy$$

$$(9^{1/3}x)^3 + (3^{1/3}y)^3 + 1^3 = 3(9^{1/3}x)(3^{1/3}y) \Rightarrow 9^{1/3}x = 3^{1/3}y = 1$$

Sequence and Series 207

21. If
$$a, x, y, z, b$$
 A.P.
$$x = \frac{3a+b}{4}, y = \frac{a+b}{2} \text{ and } z = \frac{a+3b}{4}$$
If a, x, y, z, b H.P.
$$x = \frac{4ab}{3b+a}, y = \frac{2ab}{a+b} \text{ and } z = \frac{4ab}{3a+b}$$
If $\left(\frac{3a+b}{4}\right) \left(\frac{a+b}{2}\right) \left(\frac{a+3b}{4}\right) = 55 \text{ and } \left(\frac{4ab}{3b+a}\right) \left(\frac{2ab}{a+b}\right) \left(\frac{4ab}{3a+b}\right) = \frac{343}{55} \Rightarrow ab = 7$

Chapter 10 - Determinants



Exercise-1: Single Choice Problems

1. Direct expansion.

3.
$$\begin{vmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3 \end{vmatrix} = (1+abc) \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = 0$$

4.
$$D = \begin{vmatrix} 1 & 2a & a \\ 1 & 3b & b \\ 1 & 4c & c \end{vmatrix} = 0 \implies \frac{2}{b} = \frac{1}{a} + \frac{1}{c}$$

6.
$$2x + ay + 6z = 8$$
and
$$4x + 2ay + 6z = 8 \Rightarrow 2x + ay = 0$$
and
$$6x + 12y + 6z = 30 \Rightarrow 4x + (12 - a) y = 22$$

$$\Rightarrow y = \frac{22}{12 - 3a} \qquad a \neq 4$$

7.
$$R_1 \to R_1 + R_2 + R_3$$

$$\begin{vmatrix} x^{2'} - 4 & x^2 - 4 & x^2 - 4 \\ 2 & x^2 - 13 & 2 \\ x^2 - 13 & 3 & 7 \end{vmatrix} = (x^2 - 4) \begin{vmatrix} 1 & 1 & 1 \\ 2 & x^2 - 13 & 2 \\ x^2 - 13 & 3 & 7 \end{vmatrix} = 0$$

$$\Rightarrow (x^2 - 4)(x^2 - 15)(20 - x^2) = 0$$

Determinants 209

8.
$$D = \begin{vmatrix} k & k+1 & k-1 \\ k+1 & k & k+2 \\ k-1 & k+2 & k \end{vmatrix} = 0$$

$$R_{1} \rightarrow R_{1} - R_{2} \qquad R_{2} \rightarrow R_{2} - R_{3}$$

$$D = \begin{vmatrix} -1 & 1 & -3 \\ 2 & -2 & 2 \\ k-1 & k+2 & k \end{vmatrix} = 0$$

9.
$$\Delta = \begin{vmatrix} \log a + (n-1)\log r & \log a + (n+1)\log r & \log a + (n+3)\log r \\ \log a + (n+5)\log r & \log a + (n+7)\log r & \log a + (n+9)\log r \\ \log a + (n+11)\log r & \log a + (n+13)\log r & \log a + (n+15)\log r \end{vmatrix}$$

$$C_3 \rightarrow C_3 - C_2 \qquad C_2 \rightarrow C_2 - C_1$$

$$\Rightarrow \begin{vmatrix} \log a + (n-1)\log r & 2\log r & 2\log r \\ \log a + (n+5)\log r & 2\log r & 2\log r \\ \log a + (n+11)\log r & 2\log r & 2\log r \end{vmatrix} = 0$$

10.
$$D_2 = \begin{vmatrix} a_1 & 2a_3 & 5a_2 \\ b_1 & 2b_3 & 5b_2 \\ c_1 & 2c_3 & 5c_2 \end{vmatrix} = 10 \begin{vmatrix} a_1 & a_3 & a_2 \\ b_1 & b_3 & b_2 \\ c_1 & c_3 & c_2 \end{vmatrix} = -10 \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

11.
$$\Delta_2 = \begin{vmatrix} 1 & bc & a \\ 1 & ac & b \\ 1 & ab & c \end{vmatrix}$$

$$R_{1} \to aR_{1} \qquad R_{2} \to bR_{2} \qquad R_{3} \to cR_{3}$$

$$\Delta_{2} = \frac{1}{abc} \begin{vmatrix} a & abc & a^{2} \\ b & abc & b^{2} \\ c & abc & c^{2} \end{vmatrix} = \begin{vmatrix} a & 1 & a^{2} \\ b & 1 & b^{2} \\ c & 1 & c^{2} \end{vmatrix} = - \begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix} = -\Delta_{1}$$

12.
$$C_1 \rightarrow C_1 - C_2 + C_3 \begin{vmatrix} 0 & 0 & -1 \\ 0 & 1 & 1-a \\ 1 & a & 1+a-b \end{vmatrix} = 1$$

13.
$$\begin{vmatrix} 1 & 2 & x \\ 2 & 3 & x^2 \\ 3 & 5 & 2 \end{vmatrix} = 10 \implies x^2 + x - 12 = 0$$

$$Sum = -1$$

14.
$$R_1 \rightarrow R_1 - R_2$$
, $R_2 \rightarrow R_2 - R_3$

$$D = \begin{vmatrix} -1 & -1 & -1 \\ d-a+1 & e-b+1 & f-c+1 \\ x+a & x+b & x+c \end{vmatrix}, \quad C_1 \to C_1 - C_2 \text{ and } C_2 \to C_2 - C_3$$

On solving D does not depend on x.

15.
$$R_1 \rightarrow R_1 + R_2 + R_3$$
 | 1 1

$$\Delta = (x + y + z) \begin{vmatrix} 1 & 1 & 1 \\ 2y & y - z - x & 2y \\ 2z & 2z & z - x - y \end{vmatrix} \quad C_1 \to C_1 - C_2 \text{ and } C_2 \to C_2 - C_3$$

$$\Delta = (x + y + z)^{3} \begin{vmatrix} 0 & 0 & 1 \\ 1 & -1 & 2y \\ 0 & 1 & z - x - y \end{vmatrix} \Rightarrow \Delta = (x + y + z)^{3}$$

16.
$$\angle BOC = 60^{\circ}$$

$$\Rightarrow BC = OB = OC = r$$

$$AB = 2r\cos 30^{\circ} = \sqrt{3} r$$

$$\frac{\text{Area or rectangle}}{\text{Area of circle}} = \frac{\sqrt{3} r^2}{\pi r^2} = \frac{\sqrt{3}}{\pi}$$

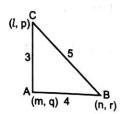
17.
$$C_1 \rightarrow C_1 - bC_3$$
, $C_2 \rightarrow C_2 + aC_3$

$$(1+a^2+b^2)^2 \begin{vmatrix} 1 & 0 & -2b \\ 0 & 1 & 2a \\ b & -a & 1-a^2-b^2 \end{vmatrix} = (1+a^2+b^2)^3$$

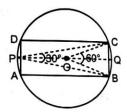
17.
$$c_1 \rightarrow c_1 - bc_3$$
, $c_2 \rightarrow c_2 + ac_3$

$$(1+a^2+b^2)^2 \begin{vmatrix} 1 & 0 & -2b \\ 0 & 1 & 2a \\ b & -a & 1-a^2-b^2 \end{vmatrix} = (1+a^2+b^2)^3$$
18. $\begin{vmatrix} 2 & a+b+c+d & ab+cd \\ a+b+c+d & 2(a+b)(c+d) & ab(c+d)+cd(a+b) \\ ab+cd & ab(c+d)+cd(a+b) & 2abcd \end{vmatrix} = \begin{vmatrix} 1 & 1 & 0 & 1 & a+b & ab \\ c+d & a+b & 0 & 1 & c+d & cd \\ cd & ab & 0 & 0 & 0 \end{vmatrix}$

19.
$$|B| = \begin{vmatrix} l & m & n \\ p & q & r \\ 1 & 1 & 1 \end{vmatrix} = [2Ar(\Delta ABC)]^2$$



20.
$$D = \begin{vmatrix} 1 & 2 & 1 \\ 1 & 3 & 4 \\ 1 & 5 & 10 \end{vmatrix} = 0$$



Determinants 21

$$D_{1} = \begin{vmatrix} 1 & 2 & 1 \\ K & 3 & 4 \\ K^{2} & 5 & 10 \end{vmatrix} = 5(K^{2} - 3K + 2) = 5(K - 1)(K - 2)$$

$$D_{2} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & K & 4 \\ 1 & K^{2} & 10 \end{vmatrix} = -3(K^{2} - 3K + 2) = -3(K - 2)(K - 1)$$

$$D_{3} = \begin{vmatrix} 1 & 2 & 1 \\ 1 & 3 & K \\ 1 & 5 & K^{2} \end{vmatrix} = K^{2} - 3K + 2 = (K - 2)(K - 1)$$

21.
$$(x+1)(x+2)(x+3)\begin{vmatrix} 1 & x+1 & (x+1)^2 \\ 1 & x+2 & (x+2)^2 \\ 1 & x+3 & (x+3)^2 \end{vmatrix} = 2(x+1)(x+2)(x+3)$$

22.
$$\begin{vmatrix} -2 & \cos C & \cos B \\ \cos C & -1 & \cos A \\ \cos B & \cos A & -1 \end{vmatrix}$$

$$-2(1-\cos^2 A) - \cos C(-\cos C - \cos A \cos B) + \cos B(\cos C \cos A + \cos B)$$

$$-2 + \cos 2A + \frac{1 + \cos 2C}{2} + \frac{1 + \cos 2B}{2} + 2\cos A\cos B\cos C$$

 $\cos 2A + \cos 2C + \cos 2B + 2\cos A\cos B\cos C$

$$2\cos(A+B)\cos(A+B) + 2\cos^2 C - 1 + 2\cos A\cos B\cos C$$

$$2\cos C[\cos C - \cos(A - B)]$$

$$-2\cos C\cos A\cos B - 1 + 2\cos A\cos B\cos C = -1$$

24. As a, b and c are the roots of $x^3 + 2x^2 + 1 = 0$, we have

$$a+b+c=-2$$

$$ab+bc+ca=0$$

$$abc=-1$$

Now, for finding the value of $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$, evaluating using first row, we get

$$a(bc-a^{2}) - b(b^{2} - ac) + c(ab - c^{2}) = abc - a^{3} - b^{3} + abc + abc - c^{3}$$

$$= 3abc - a^{3} - b^{3} - c^{3} = -(a^{3} + b^{3} + c^{3} - 3abc)$$

$$= -(a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ca)$$

$$= -(-2)[(-2)^{2} - 3(0)] = 8$$

25. For non-trivial solution,
$$|A|$$
 or $D=0$, That is, $\begin{vmatrix} \lambda & \lambda+1 & \lambda-1 \\ \lambda+1 & \lambda & \lambda+2 \\ \lambda-1 & \lambda+2 & \lambda \end{vmatrix} = 0$

Now,
$$R_2 \to R_2 - R_1$$
; $R_3 \to R_3 - R_1$ gives $\begin{vmatrix} \lambda & \lambda + 1 & \lambda - 1 \\ 1 & -1 & 3 \\ -1 & 1 & 1 \end{vmatrix} = 0$

Also,
$$R_3 \rightarrow R_3 + R_2$$
 gives
$$\begin{vmatrix} \lambda & \lambda + 1 & \lambda - 1 \\ 1 & -1 & 3 \\ 0 & 0 & 4 \end{vmatrix} = 0$$

Evaluation using third row, we get

$$4(-\lambda - \lambda - 1) = 0 \Rightarrow \lambda = -\frac{1}{2}$$

which is exactly the real value of λ .

Exercise-2: One or More than One Answer is/are Correct

1.
$$f(a,b) = a(a+b)(a+2b)$$

2.
$$R_1 \to R_1 - R_2$$
 and $R_2 \to R_2 - R_3$

$$\begin{vmatrix}
1 & -1 & 0 \\
0 & 1 & -1 \\
\cos^2 \theta & \sin^2 \theta & 1 + 2\sqrt{3} \tan \theta
\end{vmatrix} = 0 \Rightarrow \tan \theta = -\frac{1}{\sqrt{3}}$$

3.
$$R_1 \rightarrow R_1 - R_2$$
, $R_2 \rightarrow R_2 - R_3$

$$\Delta = d^{2} \begin{vmatrix} -1 & -1 & 3 \\ -1 & 2 & -1 \\ a+2d & a & a+d \end{vmatrix} = -d^{2}(13d+12a)$$

4.
$$\begin{vmatrix} 1 - \lambda & 3 & -4 \\ 1 & -(3 + \lambda) & 5 \\ 3 & 1 & -\lambda \end{vmatrix} = 0$$

5.
$$D(x) = \begin{vmatrix} x^2 + 4x - 3 & 2x + 4 & 13 \\ 2x^2 + 5x - 9 & 4x + 5 & 26 \\ 8x^2 - 6x + 1 & 16x - 6 & 104 \end{vmatrix}$$

$$C_3 \to C_3 - 4C_2, C_2 \to C_2 - 2C_1$$

$$D(x) = \begin{vmatrix} 3x + 3 & 3 & 0 \\ 26x - 37 & 26 & 0 \\ 8x^2 - 6x + 1 & 16x - 6 & 104 \end{vmatrix}$$

7.
$$D = \begin{vmatrix} a & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & a \end{vmatrix} = 0 \Rightarrow a^2 - a - 2 = 0 \Rightarrow (a - 2)(a + 1) = 0$$

$$D_1 = \begin{vmatrix} 0 & 1 & 2 \\ b & 2 & 1 \\ 0 & 1 & a \end{vmatrix} \qquad D_2 = \begin{vmatrix} a & 0 & 2 \\ 1 & b & 1 \\ 2 & 0 & a \end{vmatrix} \qquad D_3 = \begin{vmatrix} a & 1 & 0 \\ 1 & 2 & b \\ 2 & 1 & 0 \end{vmatrix}$$

$$D_2 = \begin{vmatrix} a & 0 & 2 \\ 1 & b & 1 \\ 2 & 0 & a \end{vmatrix}$$

$$D_3 = \begin{vmatrix} a & 1 & 0 \\ 1 & 2 & b \\ 2 & 1 & 0 \end{vmatrix}$$

a = 2 infinite solution

 $a = -1, b \neq 0$ has no solution.

8.
$$D = \begin{vmatrix} a & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & a \end{vmatrix} = 0 \implies a^2 - a - 2 = 0$$

$$D = \begin{vmatrix} 0 & 1 & 2 \\ b & 2 & 1 \\ 0 & 1 & a \end{vmatrix}$$

$$\Rightarrow (a-2)(a+1) = 0$$

$$D = \begin{vmatrix} a & 0 & 2 \\ 1 & b & 1 \\ 2 & 0 & a \end{vmatrix} \qquad D = \begin{vmatrix} a & 1 \\ 1 & 2 \\ 2 & 1 \end{vmatrix}$$

$$D = \begin{vmatrix} a & 1 & 0 \\ 1 & 2 & b \\ 2 & 1 & 0 \end{vmatrix}$$

a = 2 infinite solution

a = -1, $b \neq 0$ has no solution.

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

$$D = \begin{vmatrix} 1 & 2 & \mu \\ 1 & 1 & 3 \end{vmatrix} = (\lambda - 2)$$

$$D_2 = \begin{vmatrix} 2 & 8 & 6 \\ 1 & 5 & \mu \end{vmatrix} = 0;$$

$$D = \begin{vmatrix} 2 & \lambda & 6 \\ 1 & 2 & \mu \\ 1 & 1 & 3 \end{vmatrix} = (\lambda - 2)(\mu - 3); \qquad D_1 = \begin{vmatrix} 8 & \lambda & 6 \\ 5 & 2 & \mu \\ 4 & 1 & 3 \end{vmatrix} = (\lambda - 2)(4\mu - 15)$$

$$D_2 = \begin{vmatrix} 2 & 8 & 6 \\ 1 & 5 & \mu \\ 1 & 4 & 3 \end{vmatrix} = 0; \qquad D_3 = \begin{vmatrix} 2 & \lambda & 8 \\ 1 & 2 & 5 \\ 1 & 1 & 4 \end{vmatrix} = (\lambda - 2)$$

$$D_2 = \begin{vmatrix} 2 & 8 & 6 \\ 1 & 5 & \mu \\ 1 & 4 & 3 \end{vmatrix} = 0;$$

2.
$$R_1 \rightarrow R_1 + R_2 + R_3$$

$$\begin{vmatrix} a_1 + b_1 + c_1 & a_2 + b_2 + c_2 & a_3 + b_3 + c_3 \\ 2b_1 + c_1 & 2b_2 + c_2 & 2b_3 + c_3 \\ 2c_1 + a_1 & 2c_2 + a_2 & 2c_3 + a_3 \end{vmatrix}$$

$$R_2 \to R_2 + R_1 - R_3 = 9 \begin{vmatrix} a_1 + b_1 + c_1 & a_2 + b_2 + c_2 & a_3 + b_3 + c_3 \\ b_1 & b_2 & b_3 \\ 2c_1 + a_1 & 2c_2 + a_2 & 2c_3 + a_3 \end{vmatrix}$$

Now, operate as $R_3 \rightarrow R_3 - R_1 + R_2$

then $R_1 \rightarrow R_1 - R_2 - R_3$

3. Let
$$f(x) = \begin{vmatrix} (1+x)^2 & (1+x)^4 & (1+x)^6 \\ (1+x)^3 & (1+x)^6 & (1+x)^9 \\ (1+x)^4 & (1+x)^8 & (1+x)^{12} \end{vmatrix}$$

Coefficient of 'x' is f'(0).

$$f'(x) = \begin{vmatrix} 2(1+x)^2 & 4(1+x)^3 & 6(1+x)^5 \\ (1+x)^3 & (1+x)^6 & (1+x)^9 \\ (1+x)^4 & (1+x)^8 & (1+x)^{12} \end{vmatrix} + \begin{vmatrix} (1+x)^2 & (1+x)^4 & (1+x)^6 \\ 3(1+x)^2 & 6(1+x)^5 & 9(1+x)^8 \\ (1+x)^4 & (1+x)^8 & (1+x)^{12} \end{vmatrix} + \begin{vmatrix} (1+x)^2 & (1+x)^4 & (1+x)^6 \\ (1+x)^4 & (1+x)^8 & (1+x)^{12} \end{vmatrix} + \begin{vmatrix} (1+x)^2 & (1+x)^2 & (1+x)^6 \\ (1+x)^3 & (1+x)^6 & (1+x)^9 \\ 4(1+x)^3 & 8(1+x)^7 & 12(1+x)^{11} \end{vmatrix}$$

Put x = 0, f'(0) = 0

5. For non-zero solution, $\Delta = 0$

$$\begin{vmatrix} 2 & 3 & -1 \\ 3 & 2 & k \\ 4 & 1 & 1 \end{vmatrix} = 0 \implies k = 0$$

Now, let $x = \lambda$

So,
$$y = -\frac{3\lambda}{2}$$
, $z = -\frac{5\lambda}{2}$

 \Rightarrow Minimum positive integer value of z is at $\lambda = -2$; z = 5

6.
$$\begin{vmatrix} 2a & -2 & 3 \\ 1 & a & 2 \\ 2 & 0 & a \end{vmatrix} = 0 \Rightarrow a = 2$$

7. Let three terms be A - d, A, A + d.

$$\Rightarrow A^4 = (A - d)^2 (A + d)^2 = A^4 + d^4 - 2A^2 d^2$$

$$\Rightarrow d = \pm \sqrt{2}A, r = 3 + 2\sqrt{2} \text{ or } r = 3 - 2\sqrt{2}$$

8.
$$\Delta_3 = \begin{vmatrix} 3a_1 + b_1 & 3a_2 + b_2 & 3a_3 + b_3 \\ 3b_1 & 3b_2 & 3b_3 \\ 3c_1 & 3c_2 & 3c_3 \end{vmatrix} = \begin{vmatrix} 3a_1 & 3a_2 & 3a_3 \\ 3b_1 & 3b_2 & 3b_3 \\ 3c_1 & 3c_2 & 3c_3 \end{vmatrix} = 27 \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Determinants 215

$$\Delta_2 = \begin{vmatrix} 6a_1 & 2a_2 & 2a_3 \\ 3b_1 & b_2 & b_3 \\ 12c_1 & 4c_2 & 4c_3 \end{vmatrix} = 24 \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

9.
$$\Delta = \begin{vmatrix} 1 & \cos \theta & 1 \\ -\cos \theta & 1 & \cos \theta \\ -1 & -\cos \theta & 2 \end{vmatrix} = 3(1 + \cos^2 \theta)$$

Its minimum value = 3

10.
$$D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & 5 & \lambda \end{vmatrix} = \lambda - 8 = 0 \implies \lambda = 8$$

$$D_3 = \begin{vmatrix} 1 & 1 & 6 \\ 1 & 2 & 14 \\ 2 & 5 & \mu \end{vmatrix} = \mu - 36 = 0 \implies \mu = 36$$

11.
$$n \sin 2\pi \left(1+1+\frac{1}{2}+\frac{1}{3}...\frac{1}{N}\right) |\underline{n}|$$

$$n\sin 2\pi \left(1+\frac{1}{n+1}+\frac{1}{(n+1)(n+2)}+\dots\frac{1}{(n+1)(n+2)\dots(N)}\right)$$

Using $\sin(2n\pi + \theta) = \sin\theta$

$$= n(2\pi) \left(\frac{1}{n+1} + \frac{1}{(n+1)(n+2)} + \dots + \frac{1}{(n+1)(n+2)\dots N} \right)$$

Using
$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

$$=2\pi$$

12.
$$\begin{vmatrix} \cos \theta & \sin \theta & \cos \theta \\ \sin \theta & \cos \theta & \sin \theta \\ \cos \theta & \sin \theta & -\cos \theta \end{vmatrix} = 0 \implies -2\cos\theta\cos 2\theta = 0$$

Chapter 11 - Complex Numbers

Exercise-1: Single Choice Problems

2.
$$\arg(z-2-7i) = \cot^{-1}(2) \Rightarrow \frac{y-7}{x-2} = \frac{1}{2}$$

 $\arg\left(\frac{z-5i}{z+2-i}\right) = \pm \frac{\pi}{2} \Rightarrow x(x+2) + (y-5)(y-1) = 0$

4.
$$z_1^2 + z_2^2 = z_1 z_2$$

5. Let
$$\omega = re^{i\theta}$$
 then $z = \frac{1}{r}e^{i(\pi/2+\theta)}$

$$\bar{z}\omega = \frac{1}{r}e^{-i(\pi/2+\theta)}r \cdot e^{i\theta} = e^{-i\pi/2}$$

6.
$$a \sum_{r=1}^{n} r \omega^{r-1} + b \sum_{r=1}^{n} \omega^{r-1} = a(1 + 2\omega + 3\omega^{2} + \dots + n\omega^{n-1}) + b(1 + \omega + \omega^{2} + \dots + \omega^{n-1})$$

$$= a \left\{ \frac{1 + \omega + \omega^{2} + \dots + \omega^{n-1}}{1 - \omega} - \frac{n\omega^{n}}{1 - \omega} \right\} + b(0)$$

$$= a \left(0 - \frac{n}{1 - \omega} \right) + 0$$

8.
$$z^4 + z^3 + 2 = 0$$
 has roots z_1, z_2, z_3 and z_4 .

$$\Rightarrow (z-1)^4 + 2(z-1)^3 + 32 = 0 \text{ has roots } (2z_1+1), (2z_2+1), (2z_3+1) \text{ and } (2z_4+1)$$

9.
$$\arg\left(\frac{z-6-3i}{z-3-6i}\right) = \frac{\pi}{4}$$

$$\Rightarrow (x-6)^2 + (y-6)^2 = 9$$

11.
$$|iz + z_1| = |i| |z - iz_1| = |z - iz_1|$$

Maximum distance of $iz_1(-3+5i)$ from z is $2+\sqrt{3^2+(5-1)^2}=7$

Complex Number

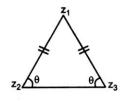
217

$$\frac{z_1 - z_2}{z_3 - z_2} = \frac{|z_1 - z_2|}{|z_3 - z_2|} e^{i\theta}$$

$$\frac{z_1 - z_3}{z_2 - z_3} = \frac{|z_1 - z_3|}{|z_2 - z_3|} e^{-i\theta}$$

$$\arg\left(\frac{z_1 - z_2}{z_3 - z_2} + \frac{z_1 - z_3}{z_3 - z_2}\right) = \arg\left(\frac{|z_1 - z_2|}{|z_3 - z_2|} e^{i\theta} - \frac{|z_1 - z_3|}{|z_2 - z_3|} e^{-i\theta}\right)$$

$$= \pm \frac{\pi}{2}$$



$$\frac{z_2}{z_1} = \frac{3}{2}e^{i\pi/3}$$

$$\left| \frac{z_1 + z_2}{z_1 - z_2} \right| = \frac{\left| \frac{1 + \frac{3}{2} e^{i\pi/3}}{1 - \frac{3}{2} e^{i\pi/3}} \right|}{1 - \frac{3}{2} e^{i\pi/3}} = \frac{\left| \frac{2 + 3\cos\frac{\pi}{3} + 3i\sin\frac{\pi}{3}}{2 - 3\cos\frac{\pi}{3} - 3i\sin\frac{\pi}{3}} \right|}{2 - 3\cos\frac{\pi}{3} - 3i\sin\frac{\pi}{3}}$$

$$= \sqrt{\frac{\left(\frac{7}{2}\right)^2 + \left(\frac{3\sqrt{3}}{2}\right)^2}{\left(\frac{1}{2}\right)^2 + \left(\frac{3\sqrt{3}}{2}\right)^2}} = \sqrt{\frac{49 + 27}{1 + 27}} = \frac{\sqrt{133}}{7}$$

14.
$$z_1 z_2 z_3 = -c$$

$$\Rightarrow 1=|c| \Rightarrow |c|=1$$

$$|z_1+z_2+z_3|\!\leq\!|z_1|\!+\!|z_2|\!+\!|z_3|$$

$$|a| \leq 3$$

$$|b| = |z_1z_2 + z_2z_3 + z_3z_1| \le |z_1z_2| + |z_2z_3| + |z_3z_1|$$

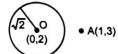
15.
$$\frac{1}{2} \le |z| \le 4$$

$$\left|z + \frac{1}{z}\right| = \sqrt{\left(\left(r + \frac{1}{r}\right)\cos\theta\right)^2 + \left(\left(r - \frac{1}{r}\right)\sin\theta\right)^2} = \sqrt{r^2 + \frac{1}{r^2} + 2(\cos\theta - \sin\theta)}$$

16.
$$|3+i(z-1)|=|z-1-3i|$$

Maximum distance of A from
$$(z) = OA + r$$

$$=\sqrt{1+1}+\sqrt{2}=2\sqrt{2}$$



17.
$$x^2 - (\sqrt{2}i)x - 1 = 0$$

$$x = \frac{\sqrt{2} i \pm \sqrt{-2+4}}{2} = \frac{1}{\sqrt{2}} (\pm 1 + i)$$

Solution of Advanced Problems in Mathematics for SEE

$$x = cis \frac{\pi}{4}, cis \frac{3\pi}{4}$$

$$x^{2187} = cis \frac{3\pi}{4}, cis \frac{\pi}{4}$$

$$\frac{1}{x^{2187}} = cis \left(\frac{-3\pi}{4}\right), cis \left(-\frac{\pi}{4}\right) \Rightarrow x^{2187} - \frac{1}{x^{2187}} = 2i \sin \frac{3\pi}{4}, 2i \sin \frac{\pi}{4} = \sqrt{2}i$$

www.jeebooks.in

18.
$$1 \cdot \frac{(1+z^9)}{1+z} = 0, z \neq -1$$

$$\Rightarrow z^9 = -1$$

$$\Rightarrow re^{i\theta} = e^{\frac{i(2n+1)\pi}{9}}, n = 1, 2, \dots 8$$

19. Let $P(re^{i\alpha}) \& Q(re^{i\beta})$

Point of intersection of tangents at ' α ', ' β ' to circle $x^2 + y^2 = r^2$ is

$$\left(r \cdot \frac{\cos\frac{\alpha+\beta}{2}}{\cos\frac{\alpha-\beta}{2}} - i \frac{r\sin\frac{\alpha+\beta}{2}}{\cos\frac{\alpha-\beta}{2}}\right) = \frac{re^{i\left(\frac{\alpha+\beta}{2}\right)}}{\cos\frac{\alpha-\beta}{2}} = \frac{2\omega_1\omega_2}{\omega_1 + \omega_2}$$

20.
$$|z_1 - z_2|^2 + |z_2 - z_3|^2 + |z_3 - z_1|^2 = 2(4 + 9 + 16) - 2(\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a})$$

where \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are position vectors of points z_1 , z_2 , z_3
 \Rightarrow Maximum value = $58 - 2(6 + 12 + 8)(-\frac{1}{2}) = 84$

 $Z = \frac{7+i}{3+4i}$

Simplifying (i.e., rationalizing the denominator), we get

$$\frac{7+i}{3+4i} \times \frac{3-4i}{3-4i} = \frac{21+4-28i+3i}{9+16}$$
$$= \frac{25-25i}{25} = 1-i$$

Therefore,

$$\left(\frac{7+i}{3+4i}\right)^{14} = (1-i)^{14}$$

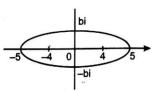
$$= [(1-i)^2]^7 = (1+i^2-2i)^7$$

$$= (+2^7)i$$

22.
$$|Z-4|+|Z+4|=10$$

 $PS+PS'=2a$

which implies that foci at 4 and -4 and a = 5 as shown in the following figure.



$$b^2 = 25(1 - e^2) = 25 - (5e)^2$$

$$=25-16=9$$

$$b=3$$

Z lies on the ellipse circumference |Z| denotes the distance from the origin. Therefore,

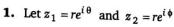
$$|Z|_{\text{max}} = 5$$

$$|Z|_{\min} = 3$$

Thus, the difference between the maximum and the minimum values of |Z| is

$$|Z|_{\text{max}} - |Z|_{\text{min}} = 5 - 3 = 2$$

Exercise-2: One or More than One Answer is/are Correct



$$|z_1 + z_2| = |z_1|$$

$$|z_1 + z_2| = |z_1|$$

$$\Rightarrow |e^{i\theta} + e^{i\phi}| = |e^{i\theta}| = 1$$

$$\Rightarrow$$
 $(\cos\theta + \cos\phi)^2 + (\sin\theta + \sin\phi)^2 = 1$

$$\Rightarrow \cos(\theta - \phi) = -\frac{1}{2}$$

$$\Rightarrow$$
 $\cos(\theta - \phi) = -\frac{1}{2}$ \Rightarrow $\theta - \phi = \frac{2\pi}{3}$ or $-\frac{2\pi}{3}$

$$\frac{z_1}{z_2} = e^{i(\theta - \phi)} = e^{i2\pi/3} \text{ or } e^{-i2\pi/3}$$

2. (a) If $\arg\left(\frac{z_1}{z_2}\right) = \frac{\pi}{2}$ then z_1 and z_2 subtend right-angle at circumcentre origin.

 \therefore the chord joining z_1 and z_2 will subtend an angle θ at ' z' such that

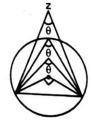
$$\begin{cases} \theta = \pi/4 & \text{if } |z| = 1\\ \theta < \pi/4 & \text{if } |z| > 1\\ \theta > \pi/4 & \text{if } |z| < 1 \end{cases}$$

$$\begin{cases} \theta < \pi/4 & \text{if } |z| > 1 \\ \theta > \pi/4 & \text{if } |z| > 1 \end{cases}$$

(b)
$$|z_1 z_2 + z_2 z_3 + z_3 z_1| = |z_1| \cdot |z_2| \cdot |z_3| \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = |\overline{z_1 + z_2 + z_3}|$$

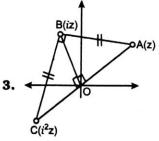
$$=|\overline{z_1+z_2+z_3}|$$

(c)
$$\left(\frac{(z_1 + z_2)(z_2 + z_3)(z_3 + z_1)}{z_1 z_2 z_3} \right) = \left(\frac{\overline{(z_1 + z_2)(z_2 + z_3)(z_3 + z_1)}}{z_1 z_2 z_3} \right)$$



Solution of Advanced Problems in Mathematics for JE

(d) The triangle formed by joining z_1, z_3 and z_2 is isosceles and right angled at z_3 .



Method I: Multiplying a complex number by i rotates a vector for z in the anticlockwise direction by an angle of 90°.

$$\angle AOB = \angle BOC = 90^{\circ}$$

As shown in figure, the $\triangle ABC$ is a right angled isosceles triangle.

Method II: Let z, iz, i^2z are vertices A, B and C of the triangle ABC.

$$|AB| = |BC| \text{ also } |AB|^2 + |BC|^2 = |AC|^2$$

Since,
$$|AB| = |BC| \text{ also } |AB|^2 + |BC|^2 = |AC|^2$$

the $\triangle ABC$ is a right angled isosceles triangle.

7.
$$(z+i)^4 = 1+i$$

::

$$z = -i + 2^{1/8} \cos\left(\frac{\pi}{8} + \frac{2m\pi}{4}\right)$$

Square side length = $\left(\frac{2^{1/8} \cdot 2}{\sqrt{2}}\right)$

8.
$$z = 4\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)$$

$$Roots = 4^{1/4} \cos\left(\frac{2m\pi}{4} - \frac{60^{\circ}}{4}\right)$$

$$m = 0, 1, 2, 3$$

$$m = 1$$

$$9. \quad a+b\omega+c\omega^2=\alpha$$

$$a + b\omega^2 + c\omega = \alpha$$

$$|\alpha| = 1 \implies \left| a + b \left(-\frac{1}{2} + \frac{\sqrt{3}i}{2} \right) + c \left(-\frac{1}{2} - \frac{\sqrt{3}i}{2} \right) \right| = 1$$

10. Check option for $z = \omega$

$$\omega^{62}+\omega+1=0$$

$$\omega^2 + \omega + 1 = 0$$

$$\omega^{155} + \omega + 1 = 0$$
 $\omega^2 + \omega + 1 = 0$

$$\omega^2 + \omega + 1 = 0$$

Exercise-3: Comprehension Type Problem

Paragraph for Question Nos. 1 to 2

Sol.
$$f(z) + \overline{f(z)} = f(\overline{z}) + \overline{f(\overline{z})}$$

$$(\alpha z + \beta) + (\overline{\alpha} \overline{z} + \overline{\beta}) = \alpha \overline{z} + \beta + \overline{\alpha} z + \overline{\beta}$$

$$\Rightarrow (\alpha - \overline{\alpha})(z - \overline{z}) = 0$$

$$\Rightarrow \operatorname{Im}(\alpha) = 0 \qquad (\operatorname{Im}(z) \neq 0)$$

$$f(z) + \overline{f(z)} = 0$$

$$\Rightarrow \alpha(z + \overline{z}) + (\beta + \overline{\beta}) = 0 \qquad (\because \alpha = \overline{\alpha})$$

$$\Rightarrow \operatorname{Re}(\beta) = 0 \qquad (\operatorname{Re}(z) = 0)$$

$$|f(z)|^{2} > (z + 1)^{2}$$

$$\Rightarrow \alpha^{2}z^{2} + \beta^{2} > z^{2} + 2z + 1$$

$$\Rightarrow (\alpha^{2} - 1)z^{2} - 2z + (\beta^{2} - 1) > 0 \ \forall \ z \in R$$

Paragraph for Question Nos. 3 to 5

Sol.
$$|\alpha - \beta| = 2\sqrt{7}$$

 $\Rightarrow |(\alpha + \beta)^2 - 4\alpha\beta| = 28$
 $\Rightarrow |z_1^2 - 4(z_2 + m)| = 28$
 $\Rightarrow |m - (4 + 5i)| = 7$
 $\Rightarrow |a + b| = 7$
 $\Rightarrow |a + b| = 7$
 $\Rightarrow |a + b| = 1$
 $\Rightarrow |a + b| = 1$
 $\Rightarrow |a + b| = 1$

Paragraph for Question Nos. 6 to 7

Sol.
$$C_1:|z-z_1|^2+|z-z_2|^2=10 \Rightarrow C_1:(x-5)^2+y^2=1$$

 $C_2:|z-z_1|^2+|z-z_2|^2=16 \Rightarrow C_2:(x-5)^2+y^2=4$

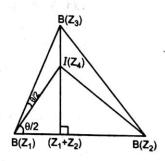
Paragraph for Question Nos. 8 to 9

Sol.
$$\frac{Z_2 - Z_1}{|Z_2 - Z_1|} = \frac{Z_4 - Z_1}{|Z_4 - Z_1|} \cdot e^{i\theta/2}, \quad \frac{Z_3 - Z_1}{|Z_3 - Z_1|} = \frac{Z_4 - Z_1}{|Z_4 - Z_1|} e^{i\theta/2}$$

$$\Rightarrow \frac{(Z_2 - Z_1)(Z_3 - Z_1)}{|Z_2 - Z_1||Z_3 - Z_1|} = \frac{(Z_4 - Z_1)^2}{|Z_4 - Z_1|^2} e^{\theta i}$$

$$\Rightarrow \frac{(Z_2 - Z_1)(Z_3 - Z_1)}{(Z_4 - Z_1)^2} = \frac{AB \cdot AC}{(IA)^2}$$

Similarly, others.



222

Exercise-4: Matching Type Problems

1. Let
$$BC = n$$
, $CA = n + 1$, $AB = n + 2$

(A)
$$\left| \arg \left(\frac{z_1 - z_3}{z_2 - z_3} \right) \right| = \left| 2 \arg \left(\frac{z_3 - z_1}{z_2 - z_1} \right) \right| = \angle C = 2 \angle A$$

$$\therefore \frac{\sin C}{c} = \frac{\sin A}{a} \Rightarrow \frac{\sin 2A}{n+2} = \frac{\sin A}{n}$$

$$\Rightarrow \cos A = \frac{n+2}{2n} \Rightarrow \frac{(n+2)^2 + (n+1)^2 - n^2}{2(n+2)(n+1)} = \frac{n+2}{2n}$$

$$\Rightarrow n(n^2 + n + 5) = (n^2 + 3n + 2)(n + 2) \Rightarrow n^2 - 3n - 4 = 0 \Rightarrow n = 4$$

$$\therefore$$
 biggest side = $n + 2 = 6$

(B)
$$(\overrightarrow{c} - \overrightarrow{a}) \cdot (\overrightarrow{b} - \overrightarrow{c}) = 0 \Rightarrow \angle C = 90^{\circ} \Rightarrow a^2 + b^2 = c^2$$

$$\Rightarrow n^2 + (n+1)^2 = (n+2)^2 \Rightarrow n = 3$$

$$\therefore |\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}| = 2\Delta = 12$$

(C)
$$\left| \frac{a_1 b_2 - a_2 b_1}{a_1 a_2 + b_1 b_2} \right| = \tan A = \frac{4}{3}$$
 $\therefore \cos A = \frac{3}{5}$

$$\therefore \frac{(n+2)^2 + (n+1)^2 - n^2}{2(n+2)(n+1)} = \frac{3}{5}$$

$$\Rightarrow 5(n^2 + 6n + 5) = 6(n^2 + 3n + 2)$$

$$\Rightarrow n^2 - 12n - 13 = 0 \Rightarrow n = 13$$

$$S - c = \frac{1}{2}(a + b - c) = \frac{1}{2}(13 + 14 - 15) = 6$$

(D) Altitudes are in H.P. \Leftrightarrow sides are in A.P. Also, b > a + c, a > b + c, $c > a + b \Rightarrow$ least value of a = 2

 \therefore least value of b=3

3. (A)
$$\{0, 1, \omega + 1\}^m = \{0, 1, -\omega^2\}^m$$

 $0, 1, -1, -\omega^2, -\omega, \omega$

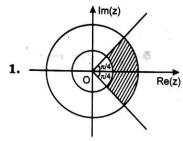
(B)
$$2\omega$$
, $(x^2 - x + 10) = 0$ roots are $2 + 3\omega$, $2 + 3\omega^2$
Last number is 3.

(C) Central angle =
$$60^{\circ}$$
 Equilateral Δ

(D) Put
$$z = 1$$
 $z_1 = 1$, $z_2 = \omega$, $z_3 = \omega^2$

Complex Numbers 22

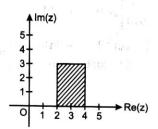
Exercise-5: Subjective Type Problems



$$2 \le |z| \le 4$$

Probability =
$$\frac{1}{4}$$

2.

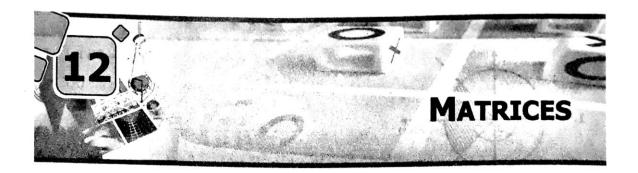


3.
$$z + \bar{z} = 2|z-1| \implies y^2 = 2x-1$$

$$arg(z_1 - z_2) = \frac{\pi}{4} \implies y_1 - y_2 = x_1 - x_2$$

$$y_1^2 - y_2^2 = 2(x_1 - x_2) = 2(y_1 - y_2) \implies y_1 + y_2 = 2 \quad (y_1 \neq y_2)$$

Chapter 12 - Matrices



Exercise-1: Single Choice Problems

1.
$$A = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} [\cos \theta & \sin \theta] + \begin{bmatrix} \sin \theta \\ -\cos \theta \end{bmatrix} [\sin \theta & -\cos \theta]$$

$$= \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{bmatrix} + \begin{bmatrix} \sin^2 \theta & -\sin \theta \cos \theta \\ -\sin \theta \cos \theta & \cos^2 \theta \end{bmatrix} = I$$

$$A^{2} = \begin{vmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{vmatrix} = 1$$

$$A^{2} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{3.} \quad A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

$$\det (\operatorname{adj} (\operatorname{adj} (A))) = |A|^4 = 27^4$$

$$\left\{\frac{27^4}{5}\right\} = \frac{1}{5}$$

4.
$$A^{-1}B^{-1} = B^{-1}A^{-1} \Rightarrow C = (A^{-1} + B^{-1})^5 = (I)^5$$

5.
$$A^4 = I \implies A(A^3) = I$$

7.
$$(adj A) A = |A|I$$

 $|A| = xyz - 8x - 4y - 3z + 28 = 2\lambda - \lambda = \lambda$

8.
$$(x-2) + (x^2 - x + 3) + (x-7) = 0$$

 $x^2 + x - 6 = 0 \implies (x+3)(x-2) = 0$

Matrices 225

9.
$$A = \begin{bmatrix} -1 & 3 \\ 3 & 0 \end{bmatrix} \Rightarrow A^{-1} = \frac{1}{9} \begin{bmatrix} 0 & 3 \\ 3 & 1 \end{bmatrix}$$

10.
$$\begin{bmatrix} 1 & -\tan\theta \\ \tan\theta & 1 \end{bmatrix} \begin{bmatrix} \cos^2\theta & -\sin\theta\cos\theta \\ \sin\theta\cos\theta & \cos^2\theta \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

$$\Rightarrow$$
 $a = \cos 2\theta, b = \sin 2\theta$

11.
$$P^2 = I - P$$

or
$$P^3 = P - P^2 = 2P - I$$

or
$$P^4 = 2I - 3P$$

or
$$P^{5} = -3I + 5P$$

or
$$P^{6} = 5I - 8P$$

12.
$$|\operatorname{adj}(\operatorname{adj}(A))| = |A|^{(n-1)^2}$$

$$\Rightarrow |A| = x + y + z = 12$$

$$x \ge 1, y \ge 1, z \ge 1$$

$$\Rightarrow$$
 $^{11}C_2 = 55$

13. Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
; adj $(A) = \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}^T = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$; adj $(adj(A)) = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

14.
$$M = A^{2m} \cdot A^{-1}$$

$$M = \frac{A^{2m+1}}{a^2 + b^2}$$

If
$$A^2 = (a^2 + b^2) \cdot I \Rightarrow A^{2m} = (a^2 + b^2)^m \cdot I$$

$$A^{2m+1} = (a^2 + b^2)^m \cdot A$$

15.
$$A^2 + 5A + 6I = I$$

$$(A+2I)(A+3I)=I$$

 \Rightarrow A + 2I and A + 3I are inverse of each other.

16.
$$AB = \begin{bmatrix} 3 & -5 \\ 7 & -12 \end{bmatrix} \begin{bmatrix} 12 & -5 \\ 7 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

17.
$$adj(A) = \begin{bmatrix} 3 & -2 \\ -2 & 2 \end{bmatrix}$$

18.
$$AA^1 = I$$

$$\begin{bmatrix} \cos \theta & 2 \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ 2 \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \cos^2 \theta + 4 \sin^2 \theta & 3 \sin \theta \cos \theta \\ 3 \sin \theta \cos \theta & \sin^2 \theta + \cos^2 \theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow \sin \theta = 0$$

20. If
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
, $P = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$, $Q = P^{T}AP$, we have
$$PQ^{2014}P^{T} = \frac{P(P^{T}AP)(P^{T}AP)...(P^{T}AP)P^{T}}{2014 \text{ times}}$$

$$= (PP^{T})A(PP^{T})A(PP^{T})...(PP^{T})A(PP^{T})$$

Matrix multiplication is associative.

$$PP^{T} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_{2}$$

Hence,
$$PQ^{2014}P^T = A^{2014}$$

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \implies A^2 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$$

$$A^3 = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 6 \\ 0 & 1 \end{pmatrix}$$

$$A^4 = \begin{pmatrix} 1 & 6 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 8 \\ 0 & 1 \end{pmatrix}$$

$$A^n = \begin{pmatrix} 1 & 2n \\ 0 & 1 \end{pmatrix} \text{ and } A^{2014} = \begin{pmatrix} 1 & 4028 \\ 0 & 1 \end{pmatrix}$$

21.
$$\left| adj \left(\frac{M}{2} \right) \right| = \left| \frac{M}{2} \right|^2 = \left(\frac{1}{8} |M| \right)^2$$

22.
$$|A^{-1}| = \frac{1}{|A|} = \frac{1}{5}$$

$$|(AB)^{T}| = |AB| = |A \cdot (adj A)| = |A| \cdot |adj (A)| = 5 \times 5^{2} = 5^{3}$$

$$\therefore ||A^{-1}|(AB)^{T}| = |\frac{1}{5} (AB)^{T}| = \frac{1}{5^{3}} |AB| = 1$$

Exercise-2: One or More than One Answer is/are Correct

3.
$$A_{\alpha}A_{\beta} = A_{\alpha+\beta}$$
Also,
$$A_{0} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$
and
$$A_{\alpha}A_{-\alpha} = A_{\alpha-\alpha} = A_{0} = I$$

Matrices 227

we get
$$A_{\alpha}^{-1} = A_{-\alpha}$$

However, $A_{\alpha}^{-1} = -A_{\alpha}$ and $A_{\alpha}^{2} = -I$ do not hold.

4.
$$A(A^2 - I) - 2(A^2 - I) = 0$$

 $(A^2 - I)(A - 2I) = 0$

Exercise-3 : Matching Type Problems

- 1. (A) Possible non-negative value of |A| = 2, 4, 8
 - (B) Sum is 0.
 - (C) $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A)))| = |A|$ least absolute value of |A| = 2 $\Rightarrow |A| = \pm 2$
 - (D) least |A| = -8 $|4A^{-1}| = \frac{16}{|A|} = -2$
- **2.** (A) Since A is idempotent, $A^2 = A^3 = A^4 = ... = A$. Now,

$$(A+I)^{n} = I + {}^{n}C_{1}A + {}^{n}C_{2}A^{2} + \dots + {}^{n}C_{n}A^{n}$$

$$= I + {}^{n}C_{1}A + {}^{n}C_{2}A + \dots + {}^{n}C_{n}A$$

$$= I + ({}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n})A$$

$$= I + (2^{n} - 1)A$$

$$\Rightarrow 2^{n} - 1 = 127 \Rightarrow n = 7$$

(B) We have,

$$(I-A)(I+A+A^{2}+.....+A^{7})$$

$$=I+A+A^{2}+.....+A^{7}+(-A-A^{2}-A^{3}-A^{4}.....-A^{8})$$

$$=I-A^{8}$$

$$=I (if A^{8}=0)$$

- (C) Here matrix A is skew-symmetric and since $|A| = |A^T| = (-1)^n |A|$, so $|A|(1-(-1)^n) = 0$. As n is odd, hence |A| = 0. Hence A is singular.
- (D) If A is symmetric, A^{-1} is also symmetric for matrix of any order.

5. (A)
$$\frac{1}{n} \sum_{r=1}^{n} \left(\frac{1}{\sqrt{\frac{r}{n}}} \right) = \int_{0}^{1} \frac{1}{\sqrt{x}} dx$$

228

(B)
$$D = 4 \cos t \cos 2t$$

(C)
$$3x^2 + 2px + g < 0$$

 $f\left(-\frac{5}{3}\right) = 0$ $f(-1) = 0$

(D)
$$(2^{x}-2)^{2} + 1 + ||b-1|-3| = |\sin y|$$

 $b-1=\pm 3$
 $|\sin y| = 1$

Exercise-4: Subjective Type Problems

1.
$$(AB)^2 = AB \cdot AB = A^3B^2$$

$$(AB)^3 = (AB)^2 \cdot AB = A^3B^2 \cdot AB = A^7B^3$$

$$(AB)^4 = (AB)^3 \cdot AB = A^7B^3 \cdot AB = A^{15}B^4 \implies (AB)^{10} = A^{1023}B^{10}$$

2.
$$l = \lim_{n \to \infty} 18 \left(\frac{3}{3^2} + \frac{3^2}{3^4} + \frac{3^3}{3^6} + \dots \right) = 18 \times \frac{1}{3 \left(1 - \frac{1}{3} \right)} = 9$$

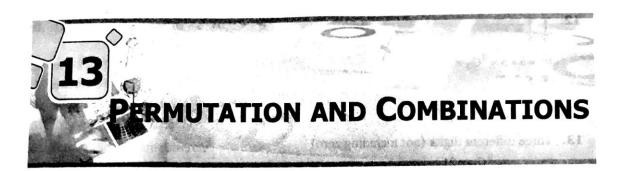
$$m = \lim_{n \to \infty} 12 \left(\frac{2}{2^2} + \frac{2^2}{2^4} + \dots \right) = 12 \times \frac{1}{2 \left(1 - \frac{1}{2} \right)} = 12$$

4.
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1b_2c_3 - a_1c_2b_3 \quad \dots \text{six elements}$$

All cannot be simultaneously 1.

5. First element of matrix $A_{10} = 286$ (10th of sequence 1, 2, 6, 15, ...) Trace of $A_{10} = 286 + 297 + 308 + 319 + ... + 385 = 3055$

Chapter 13 - Permutation and Combinations



Exercise-1: Single Choice Problems

1.
$$\frac{7}{1}$$
 $\frac{7}{1}$ $\frac{7}{1}$ = 81; $\frac{7}{1}$ $\frac{7}{1}$ = 72; $\frac{7}{1}$ $\frac{7}{1}$ = 72

2.
$$\left(\frac{8!}{3!3!2!2!}\right) \times {}^{2}C_{1} \times 3! + \left(\frac{8!}{3!2!2!2!}\right) \times 3! = 8400$$

3. Number of ways =
$$6 \times \left(\frac{3!}{2!} \times 3!\right) = 108$$

4.
$${}^4C_1 \times \frac{5!}{2!} = 240$$

5.
$${}^6C_2 \times 1 \times 4! = 360$$

6.
$$x^2 - 5x + 3 = 0$$

$$\Rightarrow$$
 $\alpha + \beta = 5$, $\alpha\beta = 3$

$$\Rightarrow \alpha + \beta = 5, \quad \alpha\beta = 3$$
Sum of roots = $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{19}{3}$

7.
$${}^5C_4 \times {}^8C_6 + {}^5C_5 \times {}^8C_5 = 196$$

8.
$$(1+2+3+.....+22)^{21}C_{10}$$

9.
$$x = \frac{2009 \times 2008 \times 2007 + 1}{2008 \times 2007 \times 2007} = 2008 + \frac{1}{2009 \times 2007}$$

$$\rightarrow$$

$$[x] = 2008$$

10.
$$N = p_1^n p_2 p_3 \dots p_{m+1}$$

No. of factors =
$$(n + 1) 2^m$$

11. Number of ways =
$$(11)! \times 2^{12}$$

12.
$$\frac{1}{5} = \frac{1}{5} =$$

13. Three different digits (not including zero)

$${}^{9}C_{3} \times 2!$$

Two digits (not including zero)

$$^9C_2 \times 2$$

Three digits (including zero)

$$^9C_2 \times 1$$

14. Let no. of elements in A = n

No. of elements in B = m

$$2^{n} - 2^{m} = 1920 = 2^{7} \times 15$$

$$\Rightarrow$$

$$n = 11, m = 7$$

$$n(A \cup B) = n(A) + n(B) - n(A \cap B) = 15$$

$$D \dots = 4! = 24$$

$$M \dots = 4! = 24$$

$$(S)C$$
 = 3! = 6

$$\textcircled{S}D \dots = 3! = 6$$

$$\bigcirc M \bigcirc D W = 1$$

$$\bigcirc M \bigcirc WD = 1$$

16.
$$P = \text{All } A$$
's together $= \frac{5!}{3!}$; $Q = \text{All } B$'s together $= \frac{6!}{4!}$

$$n(P \cap Q) = 3!;$$
 $n(P \cup Q) = \frac{5!}{3!} + \frac{6!}{4!} - 3! = 50 - 6 = 44$

17.
$$5^6 \times 6^7 \times 7^8 \times 8^9 \times 9^{10} \times 10^{11} \times \times 30^{31}$$

$$=6+11+16+21+(2\times26)+31=137$$

18.
$$(x-y)(x+y) = 10 \times 337$$

$$\Rightarrow x - y = 10 \text{ and } x + y = 337$$

$$x = \frac{347}{2} \qquad \text{(not possible)}$$

19. Total number of different things = n + 2

20. Let the numbers are 10 - d, 10, 10 + d.

$$d \in \{-9, -8, -7, \ldots, 7, 8, 9\}$$

22. $m = 2 \times 5! \times 5!$

$$n=4!\times 5!$$

23. Total ways = $4 \times 4! = 96$

25.
$${}^{4}C_{2} \times 5^{2} \times (21)^{2} = 66150$$

26. Total all letters are different.

$$\Rightarrow$$
 10⁵ - ¹⁰C₅ × 5! = 69760

29. M = 1440

$$M = 2^5 \cdot 3^2 \cdot 5$$

No. of divisions = $6 \times 3 \times 2 = 36$

 $P = \text{Product of divisors} = (1440)^{18}$

$$P = 2^{90} \cdot 3^{36} \cdot 5^{18}$$

Hence, x = 30

30. Case-1 : All digits same = 9

Case-2: Excluding zero:

(i) No's having 3 digits same : ${}^{9}C_{2} \times {}^{2}C_{1} \times \frac{4!}{3!} = 288$

(ii) No's having 2 digits same, 2 other same : ${}^9C_2 \times \frac{4!}{2!2!} = 216$

Case-3: Including zero:

(i) No's having 3 zero's: 9

(ii) No's having 2 zero's: ${}^{9}C_{1} \times \frac{3!}{2!} = 27$

(iii) No's having 1 zero = ${}^{9}C_{1} \times \frac{3!}{2!} = 27$

Hence, total no's = 576

31. Case-I: When two T's contain exactly one vowel between them,

$$5! \times ({}^{5}C_{1} \times {}^{5}C_{4} \times 4!) = 15 \times 5! \times 5!$$

Case-II: When two T's also contain consonant between them,

$$4! \times (^5C_2) \times (^7C_5 \times 5!) = 42 \times 5! \times 5!$$

32. 666660→6

$$666633 \rightarrow \frac{6!}{4!2!}$$

$$666642 \rightarrow \frac{6!}{4!}$$

232

$$666444 \rightarrow \frac{6!}{3!3!}$$

33. Five 4 runs + one 0 run = $\frac{6!}{5!}$

Four 4 runs + two 2 runs =
$$\frac{6!}{4!2!}$$

Three 4 runs + two 3 runs + one 2 runs = $\frac{6!}{3!2!}$

Two 4 runs + four 3 runs = $\frac{6!}{2!4!}$

$$\Rightarrow N = 96$$

34.
$${}^{7}C_{2} = 21$$

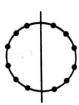
35.
$$x_1 + x_2 + x_3 + x_4 + x_5 = 101$$

Let $x_1 = 2k_1 + 1$, $x_2 = 2k_2 + 1$, $x_3 = 2k_3 + 1$, $x_4 = 2k_4 + 1$, $x_5 = 2k_5 + 1$
 $\Rightarrow k_1 + k_2 + k_3 + k_4 + k_5 = 48$; $48 + 5 - 1$ C_{5-1}

36. Total ways = (largest number is 4) $6^4 - (4^4 - 3^4) = 1121$

37.
$${}^6C_3 \times 4!$$

38. If two points are selected from one side of main diagonal = 6C_2 . Then other two points are selected on other side of main diagonal = 1. Total ways = ${}^6C_2 \times 1 = 15$



39.
$$(9-x_1) + (9-x_2) + (9-x_3) + (9-x_4) + (9-x_5) = 43$$

 $\Rightarrow x_1 + x_2 + x_3 + x_4 + x_5 = 2$
Number of ways = ${}^{2+5-1}C_{5-1} = {}^{6}C_{4} = 15$

Exercise-2: One or More than One Answer Is/are Correct

Case-I: All five letters are different.
 = 5!

Case-II: Two letters are same and remaining are different.

$${}^{3}C_{1} \times {}^{4}C_{3} \times \frac{5!}{2!} = 720$$

Case-III: Two alike, two other alike and remaining different.

$${}^{3}C_{2} \times {}^{3}C_{1} \times \frac{5!}{2!2!} = 270$$

Total number of words = 1110

2.
$$\sum_{k=0}^{100} {}^{100}C_k(x-2)^{100-k} \cdot 3^k = (x+1)^{100}$$

Coeff. of
$$x^{50} = {}^{100}C_{50}$$

3.
$$\frac{\text{Total} - \text{Row } 1 - \text{Row } 2}{|2|} \quad \{ |2| \text{ for } N \}$$

$$\frac{{}^{8}C_{5}[6] - [6] - [6]}{[2]}$$

4. = (four odd) + (4 even) + (3 even + 1 odd) + (2 even + 2 odd)
=
$${}^{5}C_{4} \times 4! + {}^{4}C_{4} \times 4! + {}^{4}C_{3} \times {}^{5}C_{1} \times 4! + {}^{4}C_{2} \times {}^{5}C_{2} \times 4 \times 4$$

= 1584

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

- 1. (
- 2. Digit 6 always come at last three place digit 5 always come at last four place and digit 4 always come at last five place.

$${}^{3}C_{1} \times {}^{3}C_{1} \times {}^{3}C_{1} \times 3! = 162$$

Exercise-4: Matching Type Problems

- 1. (A) $\frac{6!}{2!} \times {}^{7}C_{2} = 7560$
- (B) $5! \times {}^{6}C_{2} = 1800$
- (C) 7560 1800 = 5760
- (D) $4! \times {}^{5}C_{4} \cdot \frac{4!}{2!2!} = 720$
- 2. (A) Total ways (No repeating letter is at odd position)

$$\frac{11!}{2!2!2!} - 0 = \frac{11!}{(2!)^3}$$

(B)
$$\frac{7!}{2!2!} \times {}^{8}C_{4} \times \frac{4!}{2!} = 210 \times 7!$$

$$7! \times {}^8C_2 \times 1 = 28 \times 7$$

(D)
$$\left(\frac{4!}{2!}\right) \times \left(\frac{7!}{2!2!}\right) = \frac{4!7!}{(2!)^3}$$

Exercise-5 : Subjective Type Problems

1.
$${}^{9}C_{4} \times {}^{5}C_{4} = 630$$

2.
$${}^{9}C_{2} \times \frac{7!}{2!2!} = \frac{9!}{8}$$

4.
$${}^{10}C_3 - {}^8C_3 = 64$$

5. Case-I: If Ravi is include.

$${}^{7}C_{5} \times {}^{9}C_{8} = 189$$

Case-II: If Ravi is not include.

$${}^{7}C_{6} \times [{}^{8}C_{7} + {}^{9}C_{8}] = 119$$

Total number of ways = 308

6.
$${}^{6}C_{4} - {}^{4}C_{2} = 9$$

7.
$$5! - (1 + {}^{5}C_{2} \times 1) = 109$$

8. Let other two sides are a and b.

$$a+b>11$$
 $0 < a \le 11$, $0 < b \le 11$

9.
$$\begin{array}{c|c} & & & & \\ \hline a_3 & & & b_2 & c_3 \\ a_2 & & & & c_2 \\ & & & & c_1 \end{array}$$

 $(a_1, a_2, a_3), (b_1, b_2)$ and (c_1, c_2, c_3) are alike things so these can be arranged is

$$\frac{8!}{2!3!3!} = \frac{4 \cdot 5 \cdot 6 \cdot 7 \cdot 8}{2 \times 6} = 560$$

10.
$${}^{n}C_{2} - n = 14 \implies n = 7$$

11.
$$x_1 + x_2 + x_3 + \dots + x_7 + x_8 = 93$$

$$x_1 \ge 0, x_2 \ge 6, x_3 \ge 6, \dots, x_7 \ge 6, x_8 \ge 0$$

$$x_1 + x_2' + x_3' + \dots + x_7' + x_8 = 57$$

No. of ways =
$$^{64}C_7$$

12.
$${}^4C_4({}^2C_1)^4 = 16$$

13. Let
$$x_1$$
 objects of one type

 x_2 objects of second type

 x_3 objects of third type

$$x_1 + x_2 + x_3 = 3n$$

235

Permutation and Combinations

 $0 \le x_1 \le 2n, 0 \le x_2 \le 2n, 0 \le x_3 \le 2n$ Number of ways = ${}^{3n+2}C_2 - 3 \times {}^{n+1}C_2 = 3n^2 + 3n + 1$

14. x + y + z + w = 15 $x \ge 0, y \ge 6, z \ge 2, w \ge 1$ x + y' + z' + w' = 6Number of ways = ${}^{9}C_{3} = 84$

Chapter 14 - Binomial Theorem



Exercise-1: Single Choice Problems

1. Let
$$x = 2^{\frac{153}{2}}$$
 $N = x^{16} - 1$ $\alpha = x^2 + \sqrt{2} x + 1$ $N = (x^4 - 1)(x^4 + 1)(x^8 + 1)$ $N = (x^4 - 1)(x^2 + \sqrt{2}x + 1)(x^2 - \sqrt{2}x + 1)(x^8 + 1)$ Let $y = 2^{204}$ $N = y^6 - 1 = (y^3 - 1)(y^3 + 1)$ $\beta = y^2 - y + 1$ $= (y^3 - 1)(y + 1)(y^2 - y + 1)$

3. ${}^4C_2\alpha^2 = {}^-6C_3\alpha^3$ $\Rightarrow \alpha = -\frac{3}{10}$

5. $\alpha_n = (2 + \sqrt{3})^n$ Let $\alpha'_n = (2 - \sqrt{3})^n \Rightarrow \alpha_n + \alpha'_n = \text{integer}$ $\Rightarrow [\alpha_n] + \{\alpha_n\} + \alpha'_n = \text{integer} \Rightarrow \{\alpha_n\} = 1 - \alpha'_n$ So, $\lim_{n \to \infty} (\alpha_n - [\alpha_n]) = \lim_{n \to \infty} [1 - (2 - \sqrt{3})^n] = 1 - 0 = 0$ $(\because 0 > \{\alpha_n\}, \alpha'_n < 1)$

6.
$$N = {}^{20}C_7 - {}^{20}C_8 + {}^{20}C_9 - {}^{20}C_{10} + \dots - {}^{20}C_{20}$$

 $= ({}^{20}C_7 + {}^{20}C_9 + {}^{20}C_{11} + \dots + {}^{20}C_{19}) - ({}^{20}C_8 + {}^{20}C_{10} + \dots + {}^{20}C_{20})$
 $= ({}^{20}C_0 + {}^{20}C_2 + {}^{20}C_4 + {}^{20}C_6) - ({}^{20}C_1 + {}^{20}C_3 + {}^{20}C_5)$
 $= (1 + 190 + 4845 + 38760) - (20 + 1140 + 15504)$
 $= 43796 - 16664 = 27132 = 3 \times 4 \times 7 \times 19 \times 17$

7.
$$\log_2 \left[1 + \frac{1}{2} (2^{12} - 2) \right] = \log_2 2^{11} = 11$$
 $\left[\because \sum^n C_r = 2^n \right]$
8. $T_{r+1} = {}^n C_r \cdot x^{n-r} \cdot y^r = {}^{12} C_r \cdot x^{12-r} \cdot \left(\frac{1}{x^3} \right)^r$

Binomial Theorem 237

$$T_{4} = {}^{12}C_{3} = \frac{12 \times 11 \times 10}{3 \cdot 2 \cdot 1} = 220$$
9.
$$\frac{3}{4!} + \frac{4}{5!} + \frac{5}{6!} + \dots = \frac{1}{3!} - \frac{1}{(r+3)!}$$

$$\sum_{r=3}^{52} \frac{r}{(r+1)!} = \sum_{r=2}^{52} \left[\frac{1}{r!} - \frac{1}{(r+1)!} \right] = \frac{1}{3!} - \frac{1}{53!}$$

$$\Rightarrow \qquad k = 50$$
10.
$$f(x) = \sum_{r=1}^{n} [(r+1)^{2} {}^{n}C_{r} - r^{2} {}^{n}C_{r-1}]$$

$$f(n) = (n+1)^{2} - 1$$

$$f(30) = 960$$
12.
$${}^{n}C_{1} \cdot \alpha + {}^{n}C_{2} \cdot \alpha^{2} + {}^{n}C_{3} \cdot \alpha^{3} + \dots {}^{n}C_{n} \cdot \alpha^{n} = (1+\alpha)^{n} - 1$$

$$\left(\text{where } \alpha = e^{\frac{2\pi i}{n}} = \frac{\alpha_{2}}{\alpha_{1}} \right)$$
13.
$$2^{30} \cdot 3^{20} = 2^{10} \cdot (6)^{20} = 1024(7 - 1)^{20} = 1024(7K + 1) = 7k' + 1024 = 7k' + 1022 + 2$$
14.
$${}^{26}C_{0} + {}^{26}C_{1} + {}^{26}C_{2} + \dots + {}^{26}C_{26} = 2^{26}$$

$$\Rightarrow 2({}^{26}C_{0} + {}^{26}C_{1} + \dots + {}^{26}C_{13}) = 2^{26} + {}^{26}C_{13}$$
15.
$$(1+x+x^{2})^{n} = a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} + \dots + a_{2n}x^{2n}$$

$$\text{differentiate w.rt. } x$$

$$n(1+x+x^{2})^{n-1}(1+2x) = a_{1} + 2a_{2}x + 3a_{3}x^{2} + \dots + 2n \cdot a_{2n}x^{2n-1}$$

$$\text{Put } x = 1 \quad n \cdot 3^{n} = a_{1} + 2a_{2}x + 3a_{3}\omega^{2} + \dots + 2n \cdot a_{2n}\omega^{2n-1} \qquad \dots (2)$$

$$\text{Put } x = \omega \qquad 0 = a_{1} + 2a_{2}\omega + 3a_{3}\omega^{4} + \dots + 2n \cdot a_{2n}\omega^{4n-2} \qquad \dots (3)$$

$$(1) + (2) + (3) \qquad n \cdot 3^{n-1} = a_{1} + 4a_{4} + 7a_{7} + 10a_{10} + \dots$$
16.
$${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$$

$${}^{3}C_{0} + {}^{3}C_{1} + {}^{4}C_{2} + {}^{5}C_{3} + \dots + {}^{99}C_{97} = {}^{100}C_{97}$$

16.
$${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$$
 ${}^{3}C_{0} + {}^{3}C_{1} + {}^{4}C_{2} + {}^{5}C_{3} + \dots + {}^{99}C_{97} = {}^{100}C_{97}$

17. Last digit of 9!=0 Last digit of $3^{9966} = 9$ Hence last digit 9.

18.
$$x = T_7 = {}^{n}C_6(3^{1/3})^{n-6} \cdot (4^{-1/3})^6$$

$$y = T_{n-5} = {}^{n}C_{n-6}(3^{1/3})^{6} \cdot (4^{-1/3})^{n-6}$$

$$y = 12x$$

$${}^{n}C_{n-6}(3^{1/3})^{6}(4^{-1/3})^{n-6} = 12 \cdot {}^{n}C_{6}(3^{1/3})^{n-6}(4^{-1/3})^{6}$$

$$\Rightarrow 12 = (12^{1/3})^{12-n} \Rightarrow n = 9$$

20.
$$t_{r+1} = {}^{15}C_r(x^2)^{15-r} \cdot \left(\frac{2}{x}\right)^r$$

Coeff. of $x^{15} = {}^{15}C_5 \cdot 2^5$
Coeff. of $x^0 = {}^{15}C_{10} \cdot 2^{10}$

21.
$$(1+x)^2(1+y)^3(1+z)^4(1+w)^5$$

General term = 2C_a 3C_b 4C_d ${}^5C_ex^{a+b+d+e}$

$$\sum_{a,b,d} {}^2C_a \times {}^3C_b \times {}^4C_d \times {}^5C_e = {}^{14}C_{12} \text{ or } {}^{14}C_{12} = \frac{14 \times 13}{2} = 91$$

22.
$$\sum_{r=0}^{n} r \cdot {^{n}C_{r}} + 2 \sum_{r=0}^{n} \frac{1}{r+1} \cdot {^{n}C_{r}}; \quad n \sum_{r=0}^{n} {^{n-1}C_{r-1}} + \frac{2}{n+1} \sum_{r=0}^{n} {^{n+1}C_{r+1}}$$
$$\Rightarrow n \cdot 2^{n-1} + \frac{2}{n+1} \cdot (2^{n+1} - 1)$$

Exercise-2: One or More than One Answer is/are Correct

1.
$$N = {}^{20}C_7 - {}^{20}C_8 + {}^{20}C_9 - {}^{20}C_{10} + \dots - {}^{20}C_{20}$$

$$= ({}^{20}C_7 + {}^{20}C_9 + {}^{20}C_{11} + \dots + {}^{20}C_{19}) - ({}^{20}C_8 + {}^{20}C_{10} + \dots + {}^{20}C_{20})$$

$$= ({}^{20}C_{20} + {}^{20}C_2 + {}^{20}C_4 + {}^{20}C_6) - ({}^{20}C_1 + {}^{20}C_3 + {}^{20}C_5)$$

2. For B and D put x = 1, -1For A differentiate with respect to x then put x = 0For C replace x with $\frac{1}{x}$

3.
$$\sum_{r=0}^{4} (-1)^{r} {}^{16}C_r = {}^{16}C_0 - {}^{16}C_1 + {}^{16}C_2 - {}^{16}C_3 + {}^{16}C_4 = 1365$$

4.
$$2 \times \frac{1}{2} \times {}^{n}C_{1} = 1 + \frac{1}{2^{2}} \times {}^{n}C_{2} \Rightarrow n = 8, 1$$

$$T_{r+1} = {}^{8}C_{r} \left(\frac{1}{2}\right)^{r} x^{\frac{16-3r}{4}} \Rightarrow r = 0, 4, 8$$

5. LHS =
$$(1+2x^2+x^4)(1+C_1x+C_2x^2+C_3x^3+....)$$

RHS =
$$a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$

Comparing the coefficients of x, x^2, x^3, \dots

Now,
$$2a_2 = a_1 + a_3$$
$$2({}^nC_2 + 2) = {}^nC_1 + ({}^nC_3 + 2 {}^nC_1)$$
$$2\frac{n(n-1)}{2} + 4 = 3n + \frac{n(n-1)(n-2)}{6}$$
or
$$n^3 - 9n^2 + 26n - 24 - 0$$

or
$$n^3 - 9n^2 + 26n - 24 = 0$$

$$(n-2)(n^2-7n+12)=0$$

$$(:8 + 52 = 36 + 24)$$

or
$$(n-2)(n-3)(n-4)=0$$

$$n = 2, 3, 4$$

6.
$$\sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{k=0}^{n} {^{n}C_{i} \cdot {^{n}C_{j}} \cdot {^{n}C_{k}}} = \left(\sum_{i=0}^{n} {^{n}C_{i}}\right) \left(\sum_{j=0}^{n} {^{n}C_{j}}\right) \left(\sum_{k=0}^{n} {^{n}C_{k}}\right) = 2^{3n}$$

7.
$$(^{100}C_6 + ^{100}C_7) + 3(^{100}C_7 + ^{100}C_8) + 3(^{100}C_8 + ^{100}C_9) + (^{100}C_9 + ^{100}C_{10})$$

$$= ^{101}C_7 + 3 ^{101}C_8 + 3 ^{101}C_9 + ^{101}C_{10}$$

$$(^{101}C_7 + ^{101}C_8) + 2(^{101}C_8 + ^{101}C_9) + (^{101}C_9 + ^{101}C_{10}) = ^{102}C_8 + 2 \cdot ^{102}C_9 + ^{102}C_{10}$$

$$= (^{102}C_8 + ^{102}C_9) + (^{102}C_9 + ^{102}C_{10}) = ^{103}C_9 + ^{103}C_{10} = ^{104}C_{10}$$

8.
$$\frac{^{15}C_{2r}}{^{15}C_{2r+1}} > \frac{1}{2} \Rightarrow \frac{2r+1}{15-2r} > \frac{1}{2} \Rightarrow \frac{6r-13}{2r-15} < 0 \Rightarrow \frac{13}{6} < r < \frac{15}{2}$$

9.
$$f(x) = 1 + x^{111} + x^{222} + ... + x^{999}$$

if f(x) is divided by x + 1, then remainder f(-1) = 0

if f(x) is divided by x - 1, then remainder f(1) = 10

$$f(x) = (1 + x^{222} + x^{444} + x^{666} + x^{888}) + x^{111} (1 + x^{222} + x^{444} + x^{666} + x^{888})$$
$$= (1 + x^{111})(1 + x^{222} + x^{444} + x^{666} + x^{888})$$

Exercise-3: Matching Type Problems

2. (B)
$$P = \sum_{r=0}^{n} {^{n}C_{r}} = 2^{n}$$

$$Q = \sum_{r=0}^{m} {^{m}C_{r}} (15)^{r} = (1+15)^{m} = 16^{m}$$

(C)
$$1+6+120+56K$$

Reminder = 15

240 Solution of Advanced Problems in Mathematics for JEE

3. (A)
$$\frac{a^2 + b^2 + ab}{a + b} = \frac{(a - b)(a^2 + b^2 + ab)}{(a - b)(a + b)} = \frac{a^3 - b^3}{a^2 - b^2}$$
$$\frac{4 + \sqrt{3}}{\sqrt{3} + 1} + \frac{8 + \sqrt{15}}{\sqrt{5} + \sqrt{3}} + \frac{12 + \sqrt{35}}{\sqrt{7} + \sqrt{5}} + \dots = \frac{1}{2}((\sqrt{169})^3 - 1^3) = 1098$$

(B)
$$\frac{8}{5}(2\cos^2\theta - 3\sin\theta) = \frac{8}{5}(-2\sin^2\theta - 3\sin\theta + 2)$$

Greatest value = 5 at
$$\sin \theta = -\frac{3}{4}$$
 (:: $4 \le \theta \le 6$)

(C) Let
$$(\sqrt{3} + 1)^6 = I + f$$

and $(\sqrt{3} - 1)^6 = f' \Rightarrow (\sqrt{3} + 1)^6 + (\sqrt{3} - 1)^6 = 416 = I + 1$
 $\Rightarrow I = 415 = 1 \times 5 \times 82$

$$\Rightarrow I = 415 = 1 \times 5 \times 83$$
(D) $(1+x)(1+x^2)...(1+x^{118}) = \frac{1-x^{256}}{1-x} = \frac{1-x^{n+1}}{1-x}$

$$\Rightarrow n+1-256$$

Exercise-4 : Subjective Type Problems

2. Coefficient of
$$x^{60} = -6 + 5 + 8 - 6 = 1$$

7.
$$(1+x)^{3n} = {}^{3n}C_0 + {}^{3n}C_1x + {}^{3n}C_2x^2 + \dots + {}^{3n}C_{3n}x^{3n}$$

Put
$$x = 1$$
 $2^{3n} = {}^{3n}C_0 + {}^{3n}C_1 + {}^{3n}C_2 + \dots + {}^{3n}C_{3n}$

Put
$$x = \omega$$
 $(-\omega^2)^{3n} = {}^{3n}C_0 + {}^{3n}C_1\omega + {}^{3n}C_2\omega^2 + \dots + {}^{3n}C_{3n}$

Put
$$x = \omega^2$$
 $(-\omega)^{3n} = {}^{3n}C_0 + {}^{3n}C_1\omega^2 + {}^{3n}C_2\omega^4 + \dots + {}^{3n}C_{3n}$
 $2^{3n} + (-\omega^2)^{3n} + (-\omega)^{3n} = 3[{}^{3n}C_0 + {}^{3n}C_3 + \dots + {}^{3n}C_{3n}]$

10.
$$\sum_{K=1}^{5} {}^{20}C_{2K-1} = 2^{18} \implies 2^{108} = 2^{3}(2^{5})^{21} = 8(33-1)^{21}$$

Remainder =
$$-8$$
 or 3

11.
$$f(n) = {}^{n}C_{0}a^{n-1} - {}^{n}C_{1}a^{n-2} + \dots$$

$$\Rightarrow f(n) = \frac{(a-1)^n}{a}$$

$$f(2007) + f(2008) = 3^7 K$$

$$\Rightarrow \frac{3^9 + (a-1)3^9}{a} = 3^7 K \Rightarrow K = 9$$

13.
$$(360 + 1)^{44} - 1 = {}^{44}C_0 \cdot (360)^{44} + {}^{44}C_1 \cdot (360)^{43} + \dots + {}^{44}C_{43} \cdot (360)^1$$

= $360 [{}^{44}C_0 \cdot (360)^{43} + {}^{44}C_1 \cdot (360)^{42} + \dots + {}^{44}C_{43}]$

Binomial Theorem 241

14.
$$(3^{|x-2|} + (3^{|x-2|-9})^{1/5})^7$$

 $T_6 = {}^7C_5 \cdot (3^{|x-2|})^2 \cdot 3^{|x-2|-9} = 567$
 $\Rightarrow 3^{3|x-2|-9} = 27 \Rightarrow |x-2| = 4 \Rightarrow x = 6, -2$
15. $1 + \sum_{r=1}^{10} 3^r \cdot {}^{10}C_r + \sum_{r=1}^{10} r \cdot {}^{10}C_r$
 $1 + ((1+3)^{10} - {}^{10}C_0) + 10 \cdot 2^9 = 4^{10} + 5 \cdot 2^{10} = 2^{10}(4^5 + 5)$
 $\alpha = 1, \beta = 5$
if α, β lies between the roots of $f(x) = 0$
 $f(1) < 0 \cap f(5) < 0$
 $-k^2 < 0 \cap 16 - k^2 < 0$
16. $S_n = {}^nC_0 {}^nC_1 + {}^nC_1 {}^nC_2 + ... + {}^nC_{n-1} \cdot {}^nC_n = {}^{2n}C_{n-1}$
 $S_{n+1} = {}^{2n+2}C_n$
 $\frac{S_{n+1}}{S_n} = \frac{2^{n+2}C_n}{2^nC_{n-1}} = \frac{15}{4}$
 $\Rightarrow \frac{(2n+2)(2n+1)}{n(n+2)} = \frac{15}{4}$
 $\Rightarrow n^2 - 6n + 8 = 0$

Chapter 15 - Probability

Exercise-1: Single Choice Problems

$$f(x) = 3\sqrt{x} + 4\sqrt{1-x}$$

[where
$$x = P(A)$$
]

$$f(x)_{\text{max.}} = 5 \text{ at } x = \frac{9}{25}$$

$$P(A \cup B) = 1 - P(\overline{A \cup B}) = \frac{5}{6}$$

$$P(A \cap B) = \frac{1}{4}, P(A) = \frac{3}{4}$$

$$P(B) = P(A \cup B) + P(A \cap B) - P(A) = \frac{1}{3}$$

4.
$$1 - \left(\frac{1}{2}\right)^n = \frac{31}{32} \Rightarrow n = 5$$

5. Required probability =
$$\frac{3! \times 2}{9!} = \frac{1}{140}$$

$$3!(3n-3)!$$

6. Required probability =
$$\frac{\overline{[(n-1)!]^3}}{\frac{(3n)!}{(n!)^3}}$$

 $\frac{(n!)^3}{(n!)^3}$ 7. If product of two numbers equal to third numbers

7. If product of two numbers equal to third number, then possibilities are (2,3,6), (2,4,8), (2,5,10).

Probability =
$$\frac{3}{^{10}C_3} = \frac{1}{40}$$

8.
$$P = \frac{3}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{1}{3} = \frac{4}{27}$$

Probability 243

9. Total word =
$$n = \frac{7!}{2!2!}$$

ATTINIC

Favourable word =
$$m = \frac{6!}{2!} + \frac{6!}{2!} + \frac{6!}{2!2!} \implies P = \frac{m}{n} = \frac{5}{7}$$

ITTANIC

10. Probability =
$$\frac{n!}{n^n} = \frac{3}{32} = \frac{6}{64}$$

$$\Rightarrow \frac{(n-1)!}{n^{n-1}} = \frac{1 \cdot 2 \cdot 3}{4^3} \Rightarrow n = 4$$

11. Total case =
$$n = 9 \times 10^3$$

Favourable case = $m = (9 \times 10^3) - 6^4$

$$P = 1 - \frac{6^4}{9 \times 10^3} = \frac{107}{125}$$

12. Total case =
$$n = 6$$
!

Favourable case = $m = (3! \times 2!) + (2! \times 2!) = 16$

Probability =
$$\frac{16}{6!} = \frac{1}{45}$$

13. E_1 "No card is king from removed cards"

E2 "1 card is king from removed cards"

E₃ "2 card is king from removed cards"

E₄ "3 card is king from removed cards"

E₅ "4 card is king from removed cards"

F = 3 cards are drawn from pack those are kings.

$$P(F) = \sum_{i=1}^{S} P(E_i) \cdot P\left(\frac{F}{E_i}\right) = \frac{{}^{48}C_{26}}{{}^{52}C_{26}} \cdot \frac{{}^{4}C_3}{{}^{26}C_3} + \frac{{}^{48}C_{25} \cdot {}^{4}C_1}{{}^{52}C_{26}} \cdot \frac{{}^{3}C_3}{{}^{26}C_3} + 0 + 0 + 0$$

$$= \frac{4}{{}^{52}C_{26} \cdot {}^{26}C_3} ({}^{48}C_{26} + {}^{48}C_{25}) = \frac{4 \times {}^{49}C_{26}}{{}^{52}C_{26} \cdot {}^{26}C_3}$$

$$= \frac{1}{(13)(17)(25)}$$

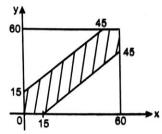
14.
$$\frac{{}^{3}C_{2} \cdot {}^{10}C_{4}}{{}^{13}C_{6}} \times \frac{1}{7} = \frac{15}{286}$$

15. Let f be function from $\{1, 2, ..., 10\}$ to itself total functions possible is 10^{10} . The number of one-one onto functions possible is 10!.

Hence, the probability of selected function to be one-one onto is $\frac{10!}{10^{10}} = \frac{9!}{10^9}$.

16. Let the friends come to the restaurant at 5hx min and 5hy min, respectively, where $x, y \in [0,60]$.

Hence, the sample space consists of all points (x, y) lying in 60×60 square as shown above and for favourable cases, $|x - y| \le 15$, that is $-15 \le x - y \le 15$ which is shown by shaded region in the graph shown below:



Hence, the probability that they will meet is given by :

$$1 - \frac{2 \times \frac{1}{2} \times 45 \times 45}{60 \times 60} = 1 - \left(\frac{3}{4}\right)^2 = \frac{7}{16}$$

17. Total ways = ${}^{91}C_3$

Favourable ways = (Common ratio is 2) + (Common ratio is 3) = 16 + 2 = 18

Exercise-2: One or More than One Answer is/are Correct

- 1. Probability = $\frac{{}^4C_3 \times {}^{11}C_5}{{}^{15}C_8} \times \frac{1}{7} = \frac{8}{195}$
- 2. Probability = $\left(1 \frac{1}{2}\right)\left(1 \frac{1}{4}\right)\left(1 \frac{1}{6}\right)\left(1 \frac{1}{8}\right).....\left(1 \frac{1}{2012}\right)$ = $\frac{1}{2} \times \frac{3}{4} \times \frac{5}{6} \times \frac{7}{8} \times \times \frac{2011}{2012} = \frac{2012!}{2^{2012}(1006!)^2}$
- **3.** We have $P(E_i) = \frac{2}{4} = \frac{1}{2}$ or i = 1, 2, 3.

Also for $i \neq j$, $P(E_i \cap E_j) = \frac{1}{4} = P(E_j)P(E_i)$. Therefore, E_i and E_j are independent for $i \neq j$.

Also,
$$P(E_1 \cap E_2 \cap E_3) = \frac{1}{4} \neq P(E_1) P(E_2) P(E_3)$$

 E_1 , E_2 , E_3 are not independent.

4. Max. $(P(A \cap B)) = P(A) = \frac{3}{5}$

Probability 245

Min.
$$(P(A \cap B)) = P(A) + P(B) - 1 = \frac{4}{15}$$

 $P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{19}{15} - P(A \cap B)$
 $P(A \cap \overline{B}) = P(A) - P(A \cap B) = \frac{3}{5} - P(A \cap B)$
 $P(\frac{\overline{A}}{B}) = \frac{P(\overline{A} \cap B)}{P(B)} = \frac{P(B) - P(A \cap B)}{P(B)}$

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

1.
$$P(E_1) = \frac{1}{10} \times 1 + \frac{2}{10} \times \frac{1}{2} + \frac{3}{10} \times \frac{1}{3} + \frac{4}{10} \times \frac{1}{4} = \frac{4}{10} = \frac{2}{5}$$

2.
$$P\left(\frac{B_3}{E_2}\right) = \frac{P(B_3 \cap E_2)}{P(E_2)} = \frac{\frac{3}{10} \times \frac{1}{3}}{\frac{2}{10} \times \frac{1}{2} + \frac{3}{10} \times \frac{1}{3} + \frac{4}{10} \times \frac{1}{4}} = \frac{1}{3}$$

Paragraph for Question Nos. 3 to 5

3. Mr. A's 3 digit number is always greater than Mr. B's 3 digit numbers then A should always pick digit 9.

len et transpillen di arobability is

Probability =
$$\frac{{}^{8}C_{3} \times {}^{8}C_{2}}{{}^{8}C_{3} \times {}^{9}C_{3}} = \frac{1}{3}$$

4. Probability =
$$\frac{{}^{8}C_{3} \times 1}{{}^{9}C_{3} \times {}^{8}C_{3}} = \frac{1}{{}^{9}C_{3}} = \frac{1}{84}$$

5. P(E) = A picks 9 or A does not pick 9 and his number is greater than B

$$= \frac{1}{3} + \frac{2}{3} \cdot \frac{1}{2} \left(1 - \frac{{}^{8}C_{3}}{{}^{8}C_{3}} \cdot \frac{1}{{}^{8}C_{3}} \right) = \frac{37}{56}$$

Paragraph for Question Nos. 6 to 7

6. Let a_n = number of ways of outcomes of n tosses when no 2 consecutive heads occur

$$a_n = a_{n-2} + a_{n-1}$$
Also, $a_1 = 2$ (H or T)
 $a_2 = 3$ (TT or HT or TH)
$$\therefore a_3 = 5, a_4 = 8 \qquad \dots$$
 $a_{10} = 144$

$$\therefore \text{ Probability} = \frac{144}{2^{10}}$$

7. [HT HT HTH] T, T, T

Number of ways of arranging =
$$\frac{4!}{3!}$$
 = 4
Probability = $\frac{4}{2^{10}}$

Paragraph for Question Nos. 8 to 10

8.
$$6n > 2^n, n \in N$$

$$n = 1, 2, 3, 4$$

9.
$$\frac{4}{6} \times \left(\frac{\text{Number of solutions of } x + y > 4, 1 \le x, y \le 6}{36} \right)$$

$$\times \left(\frac{\text{Number of solutions of } x + y + z > 8, 1 \le x, y, z \le 6}{6^3} \right)$$

$$= \frac{4}{6} \times \frac{30}{36} \times \frac{160}{216} = \frac{100}{243}$$

10. Probability =
$$\frac{4}{6} \times \frac{30}{36} \times \left(1 - \frac{160}{216}\right) = \frac{4}{6} \times \frac{30}{36} \times \frac{56}{216} = \frac{35}{243}$$

Paragraph for Question Nos. 11 to 12

11. Let p_1 be the probability of being an answer correct from section 1. Then $p_1 = 1/5$. Let p_2 be the probability of being an answer correct from section 2. Then $p_2 = 1/15$.

Hence, the required probability is
$$\frac{1}{5} \times \frac{1}{15} = \frac{1}{75}$$

12. Scoring 10 marks from four questions can be done in 3 + 3 + 3 + 1 = 10 ways so as to answer 3 questions from section 2 and 1 question from section 1 correctly.

Hence, the required probability is
$$\frac{^{10}C_3^{~10}C_1}{^{20}C_4}\frac{1}{5}\left(\frac{1}{15}\right)^3$$
.

Exercise-5: Subjective Type Problems

1.
$$\left(\frac{2}{3} + \frac{1}{3} \cdot \frac{2}{3} + \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{2}{3}\right) \left(\frac{2}{3} + \frac{1}{3} \cdot \frac{2}{3}\right) \frac{2}{3} = \frac{416}{729}$$

5. Probability =
$$\frac{{}^{6}C_{5} + {}^{7}C_{4} + {}^{8}C_{3} + {}^{9}C_{2} + {}^{10}C_{1} + 1}{2^{10}} = \frac{9}{64}$$

Probability

247

6.
$$p = \frac{{}^3C_1}{{}^7C_1} = \frac{3}{7}$$

7. Total ways =
$$\frac{61}{2!2!2!3!} \times 3! = 90$$

Favourable cases = $90 - [3! + {}^{3}C_{1} \times {}^{3}C_{1} \times 2 \times 2] = 48$

$$\Rightarrow \qquad p = \frac{48}{90} = \frac{8}{15}$$

9. $E_1 \rightarrow$ be the event of both getting the correct answer

 $E_2 \rightarrow$ both getting wrong answers.

 $E \rightarrow$ both obtaining same answer.

$$P(E_1) = \frac{1}{8} \frac{1}{12} = \frac{1}{96}, \quad P(E_2) = \left(1 - \frac{1}{8}\right) \left(1 - \frac{1}{12}\right) = \frac{77}{96}$$

$$P\left(\frac{E}{E_1}\right) = 1; \quad P\left(\frac{E}{E_2}\right) = \frac{1}{1001}$$

$$P\left(\frac{E_1}{E}\right) = \frac{1 \cdot \frac{1}{96}}{1 \cdot \frac{1}{96} + \frac{1}{1001} \cdot \frac{77}{96}} = \frac{13}{14}$$

10. Total ways = ${}^{9}C_{7} \times 7!$

Favourable ways \Rightarrow ${}^{9}C_{7} \times 7! - ({}^{7}C_{3} \times 3!) \times ({}^{6}C_{4} \times 4!)$

$$P(E) = 1 - \frac{({}^{7}C_{3} \times 3!) \times ({}^{6}C_{4} \times 4!)}{{}^{9}C_{7} \times 7!} = 1 - \frac{15}{36} = \frac{7}{12}$$

11.
$$\frac{1}{2} \left\{ \frac{1}{2} \times \frac{1}{2} + 2 \times \frac{1}{4} \times \frac{1}{4} \right\} + \frac{1}{4} \times \left\{ \left(\frac{1}{4} \times \frac{1}{4} \times \frac{1}{2} \right)^3 \right\} = \frac{27}{128}$$

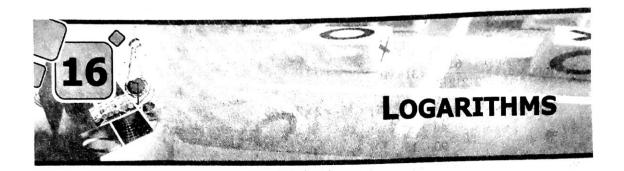
12.
$$1^{st}2^{nd}$$
 $\frac{1}{4} \times \frac{1}{6}$ a

$$2^{\text{nd}}1^{\text{st}} \qquad \frac{1}{4} \times \frac{1}{6} \qquad b$$

$$1^{st}1^{st} \qquad \qquad \frac{1}{4} \times \frac{1}{36} \qquad \qquad c$$

$$2^{\text{nd}}2^{\text{nd}} \qquad \frac{1}{4} \times \frac{1}{36} \qquad d$$

$$\frac{c+d}{a+b+c+d} = \frac{2}{5}$$



Exercise-1: Single Choice Problems

1.
$$\log_{10} x = A$$
 $x > 0$ $\log_{10}(x-2) = B$, $x-2 > 0 \Rightarrow x > 2$ \Rightarrow $A^2 - 3AB + 2B^2 < 0$ \Rightarrow $(A-2B)(A-B) < 0$ \Rightarrow $(\log x - 2\log(x-2))(\log x - \log(x-2)) < 0$ Case-I: $\log x - 2\log(x-2) > 0$...(1) Case-II: $\log x - 2\log(x-2) > 0$...(1) Case-II: $\log x - 2\log(x-2) > 0$...(2) From (1) & (2), $x \in (4, \infty)$...(2) From (2), $x \in (4, \infty)$...(2) $(\log_e x)^2 - \log_e x - 1 = 0$ $(2\log_e x)^2 - \log_e x - 1 = 0$ $(2\log_e x)^2 + 1$ $(\log_e x)^2 + 1$

3.
$$S = (a^{\log_3 7})^{\log_3 7} + (b^{\log_7 11})^{\log_7 11} + (c^{\log_{11} 25})^{\log_{11} 25}$$
$$= 27^{\log_3 7} + 49^{\log_7 11} + \sqrt{11}^{\log_{11} 25} = 469$$

4.
$$a^2 - 3a + 3 > \left(x + \frac{1}{x}\right)^0$$
 and $a^2 - 3a + 3 > 0$

$$a^2 - 3a + 2 > 0$$

 $(a-1)(a-2) > 0 \implies a \in (-\infty, 1) \cup (2, \infty)$

5.
$$P = \frac{5}{\log_x 120} = \log_{120} x^5$$
; $(120)^P = x^5 = 32 \Rightarrow x = 2$

6.
$$x = \frac{z^{1/3}}{2}$$
, $y = \frac{z^{1/6}}{5}$
If $y = z^{3/2}$; $\frac{z^{1/3}}{2} \cdot \frac{z^{1/6}}{5} = z^{3/2} \implies z = \frac{1}{10}$

7.
$$\log_x(\log_3(\log_x y)) = 0 \implies y = x^3, \log_y 27 = 1 \implies y = 27$$

8.
$$\log_{10^{-2}} 10^3 + \log_{10^{-1}} 10^{-4} = \frac{-3}{2} + 4 = \frac{5}{2}$$

9.
$$a = \frac{3}{1 + 2\log_3 2} \Rightarrow \log_3 2 = \frac{3 - a}{2a}$$
; $\log_6 16 = \frac{4\log_3 2}{1 + \log_3 2}$

10.
$$\log_2(\log_2(\log_3 x)) = 0 \implies x = 9$$

 $\log_2(\log_3(\log_2 y)) = 0 \implies y = 8$

11. Let
$$\log_3 a = x$$
, $\log_3 b = y$; $\frac{x}{3} + \frac{y}{2} = \frac{7}{2}$ and $\frac{x}{2} + \frac{y}{3} = \frac{2}{3}$

12.
$$a = \log_2 5$$
; $b = \log_5 8$; $c = \log_8 11$; $d = \log_{11} 14$
$$2^{abcd} = 2^{\log_2 14} = 14$$

14.
$$\frac{\log_8 17}{\log_9 23} = \frac{\log_{2\sqrt{2}} 17}{\log_3 23}$$

16.
$$p \le \log_{10} N $\Rightarrow P = 10^{p+1} - 10^p$
 $-q \le \log_{10} 1/N < -q + 1 \Rightarrow Q = 10^q - 10^{q-1}$$$

17.
$$n+1$$
 = number of digits = 1 + characteristic

18.
$$\log_{10}(0.15)^{20} = 20(\log_{10}15 - 2) = -16.478$$

19.
$$\log_2(\log_4(\log_{10} 10^{16})) = \log_2(\log_4 16) = 1$$

20.
$$2\log x - \log(2x - 75) = 2$$

$$\frac{x^2}{2x-75} = 100 \implies x^2 - 200x + 7500 = 0$$

21.
$$x^{\log_x a \cdot \log_a y \cdot \log_y z} = x^{\log_x z} = z$$

22.
$$x^{x\sqrt{x}} = x^{3x/2}$$

$$x \neq 0, 1$$
 $x\sqrt{x} = \frac{3}{2}x \implies x = \frac{9}{4}$

If x = 1, then it also satisfy.

24

250

Solution of Advanced Problems in Mathematics for JEE

23.
$$(\log_3 x)^2 = 2\log_3 x$$

 $\Rightarrow \log_3 x = 0$ or $\log_3 x = 2$
 $x = 1$ or $x = 9$
24. $\log_{10} x + \log_{10} y = 2 \Rightarrow xy = 100$
 $\Rightarrow x = 20, y = 5$
25. $\left(2^{x + \frac{1}{3}\left(2x - \frac{3}{x}\right)}\right)^{1/2} = 2^{\frac{7}{3}}$

26.
$$25^{(2x-x^2+1)} + 9^{(2x-x^2+1)} = 34 \frac{3^{2x-x^2+1}}{3} \cdot \frac{5^{2x-x^2+1}}{5}$$

Let
$$3^{2x-x^2+1} = a$$
 and $5^{2x-x^2+1} = b$
 $a^2 + b^2 = \frac{34}{15}ab$

$$15a^2 - 34ab + 15b^2 = 0 \implies (3a - 5b)(5a - 3b) = 0$$

Case-1: if
$$\frac{a}{b} = \frac{5}{3}$$

$$\Rightarrow \qquad \left(\frac{3}{5}\right)^{2x-x^2+1} = \frac{5}{3}$$

$$\Rightarrow \qquad 2x - x^2 + 1 = -1 \Rightarrow x^2 - 2x - 2 = 0$$

Sum of two values of x = 2

Case-2: if
$$\frac{a}{b} = \frac{3}{5}$$

$$\left(\frac{3}{5}\right)^{2x-x^2+1}=\frac{3}{5}$$

$$2x-x^2+1=1 \implies x=0 \text{ and } 2$$

Sum of all values of x is 4.

27.
$$a^{x} = b^{y} = c^{z} = d^{w}$$

$$\Rightarrow \qquad b = a^{x/y}, c = a^{x/z}, d = a^{x/w}$$

$$\log_{a}(bcd) = \log_{a} a^{\left(\frac{x}{y} + \frac{x}{z} + \frac{x}{w}\right)} = \frac{x}{y} + \frac{x}{z} + \frac{x}{w} = x\left(\frac{1}{y} + \frac{1}{z} + \frac{1}{w}\right)$$

28.
$$x = \frac{4}{(\sqrt{5}+1)(\sqrt[4]{5}+1)(\sqrt[8]{5}+1)(\sqrt[16]{5}+1)}$$

Multiply and divide by $(1 - {}^{16}\sqrt{5})$ then

$$x = -1 + \frac{16}{5}$$

$$(x+1)^{48} = 5^3 = 125$$

29.
$$\log_x \log_{18}(\sqrt{2} + \sqrt{8}) = \frac{1}{3}$$

$$\log_x \log_{(3\sqrt{2})^2} 3\sqrt{2} = \frac{1}{3}$$

$$\log_x\left(\frac{1}{2}\right) = \frac{1}{3} \implies x = \frac{1}{8}$$

30.
$$f(n) = \frac{1}{3} \log_2 n$$

if $\log_8 n$ is integer

=0

$$\sum_{n=1}^{2011} f(n) = \log_8 2^3 + \log_8 2^6 + \log_8 2^9 = 1 + 2 + 3 = 6$$

32.
$$\log_{0.3}(x-1) < \log_{(0.3)^2}(x-1) \implies (x-1)^2 > x-1$$

$$\Rightarrow (x-1)(x-2)>0$$

Also, for log to be defined (x-1) > 0

$$x \in (2, \infty)$$

33.
$$\sqrt{7^{2x^2-5x-6}} = (49)^{3\log_2\sqrt{2}} = 7^3$$

$$\Rightarrow 2x^2 - 5x - 6 = 6$$
$$2x^2 - 5x - 12 = 0$$

$$\Rightarrow (2x+3)(x-4)=0$$

34.
$$(\log_2 x)^4 + 16(\log_2 x)^2 \log_2 \frac{16}{x}$$

$$\Rightarrow t^4 + 16t^2(4-t)$$

(where $\log_2 x = t$)

$$\Rightarrow t^2(t^2 + 64 - 16t)$$

$$\Rightarrow t^2(t-8)^2$$

Since
$$1 \le x \le 256 \implies 0 \le t \le 8$$

$$\Rightarrow$$
 Maximum of $(t-8)^2t^2$ lies at $t=4$.

Hence, maximum
$$(4-8)^2 \cdot 4^2 = 256$$

37. $\lambda > 0$

$$\therefore \log_{16} x = \frac{1 \pm \sqrt{(1 - 4 \log_{16} \lambda)}}{2}$$

The given equation will have exactly one solution, if $1-4\log_{16}\lambda=0$ or $\log_{16}\lambda=\frac{1}{4}=4^{-1}$

$$\lambda = (16)^{4^{-1}} = (2^4)^{1/4} = 2, -2, 2i, -2i, \text{ where } i = \sqrt{-1}$$

But λ is real and positive.

Number of real values = 1

38. Let x be the rational number, then according to question,

$$x = 50 \times \log_{10} x$$

By trial x = 100

39.
$$x = \log_5(1000) = \log_5(5^3 \times 8) = 3 + \log_5 8$$

and $y = \log_7(2058) = \log_7(7^3 \times 6) = 3 + \log_7 6$

$$\Rightarrow x - y = \log_5 8 - \log_7 6 > 0$$

 $\begin{pmatrix} : \log_5 8 > 1, \log_7 6 < 1 \\ : \log_5 8 - \log_7 6 > 0 \end{pmatrix}$

40.
$$7 \log \left(\frac{2^4}{5 \times 3} \right) + 5 \log \left(\frac{5^2}{2^3 \times 3} \right) + 3 \log \left(\frac{3^4}{2^4 \times 5} \right)$$

=
$$7 \{4 \log 2 - \log 5 - \log 3\} + 5 \{2 \log 5 - 3 \log 2 - \log 4\} + 3 \{4 \log 3 - 4 \log 2 - \log 5\}$$

= $\log 2$

41. log 10 {tan 1° tan 2° tan 3° ... tan 45° ... tan 87° tan 88° tan 89° }

=
$$\log_{10} \{ \tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} ... \tan 45^{\circ} ... \cot 3^{\circ} \cot 2^{\circ} \cot 1^{\circ} \}$$

= $\log_{10} 1 = 0$

42.
$$\log_7 \log_7 7^{\frac{1}{2} + \frac{1}{4} + \frac{1}{8}} = \log_7 \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} \right) = \log_7 \left(\frac{7}{8} \right)$$

$$=1-\log_7 8 = 1-3\log_7 2$$

43.
$$(4)^{\log_3 2^3} + (9)^{\log_2 2^2} = (10)^{\log_x 83}$$

$$\Rightarrow \qquad (4)^{1/2} + 9^2 = (10)^{\log_x 83}$$

$$\Rightarrow$$
 (83)¹ = (83)^{log_x 10}

$$1 = \log_x 10 \implies x = 10$$

44.
$$(10^{\log_{10} x})^{\log_{10} \left(\frac{y}{s}\right)} (10^{\log_{10} y})^{\log_{10} \left(\frac{s}{x}\right)} (10^{\log_{10} s})^{\log_{10} \left(\frac{x}{y}\right)}$$

```
\log_x 2 \log_{2x} 2 = \log_{4x} 2
              x > 0, 2x > 0 and 4x > 0 and x \ne 1, 2x \ne 1, 4x \ne 1
        \Rightarrow x > 0 \text{ and } x \neq 1, \frac{1}{2}, \frac{1}{4}
        Then,
        \Rightarrow
                     \log_2 x \cdot \log_2 2x = \log_2 4x
                \log_2 x \cdot (1 + \log_2 x) = (2 + \log_2 x)
        \Rightarrow
                            (\log_2 x)^2 = 2
                                 \log_2 x = \pm \sqrt{2}
                                        x=2^{\pm\sqrt{2}}
        ٠.
                                        x = \{2^{-\sqrt{2}}, 2^{\sqrt{2}}\}
       ٠.
 46. : 2\log_{10} x - \log_x(0.01) = 2\log_{10} x - \log_x(10^{-2})
                                          = 2(\log_{10} x + \log_x 10) (: x > 0 and x \ne 1)
                                          =2\left(\frac{\log_e x}{\log_e 10} + \frac{\log_e 10}{\log_e x}\right) \ge 2 \cdot 2 \qquad (\because AM \ge GM)
47. Let \sqrt{\log_2 x} = a
             a^2-2a+1 \Rightarrow a=1
       if \sqrt{\log_2 x} = 1 \implies x = 2
48. \log_e(e^2x^{\ln x}) = \log_e x^3
       2 + (\ln x)^2 = 3 \ln x
       Let \ln x = a
       a^2 - 3a + 2 = 0 \Rightarrow (a-2)(a-1) = 0
                              \Rightarrow x_1 = e^2, x_2 = e
49. M = \text{antilog }_{32} 0.6 = (32)^{0.6} = 2^3 = 8
                          N = 49^{1} \cdot 49^{-\log_{7} 2} + 5^{-\log_{5} 4}
                              =\frac{49}{4}+\frac{1}{4}=\frac{25}{2}
50. \log_2(\log_2(\log_3 x)) = 0 \implies x = 9
      \log_3(\log_3(\log_2 y)) = 0 \implies y = 8
51. |\log_{1/2} 10 + |\log_4 625 - \log_2 5| = |\log_{1/2} 10 + \log_2 5| = 1
```

52.
$$\log_3 2 = \frac{\log_5 2}{\log_5 3} = \frac{\left(\frac{1}{2a}\right)}{b - \frac{1}{2a}} = \frac{1}{2ab - 1}$$

55.
$$(x-3)^2 = 9 \Rightarrow x = 6$$

57.
$$\log_a \left[\left(\frac{16}{15} \right)^7 \cdot \left(\frac{25}{24} \right)^5 \cdot \left(\frac{81}{80} \right)^3 \right] = 8$$

$$\Rightarrow \qquad \log_a 2 = 8 \qquad \Rightarrow \qquad a = 2^{1/8}$$

58.
$$\log_{2^3}(2^7) - \log_{3^2}(3^{-1/2}) = \frac{7}{3} + \frac{1}{4} = \frac{31}{12}$$

59.
$$\left(\frac{1}{\sqrt{27}}\right)^2 \cdot \left(\frac{1}{\sqrt{27}}\right)^{-\left(\frac{\log_5 16}{2\log_5 9}\right)} = \left(\frac{1}{27}\right) \left(\frac{1}{\sqrt{27}}\right)^{-\log_3 2}$$
$$= \left(\frac{1}{27}\right) \cdot 2^{-\log_3 \frac{1}{\sqrt{27}}} = \frac{2\sqrt{2}}{27}$$

60.
$$\log_2 \frac{(x-1)(x+2)}{3x-1} = \log_2 4$$
 $\Rightarrow \frac{(x-1)(x+2)}{3x-1} = 4$ $\Rightarrow x^2 - 11x + 2 = 0$

61.
$$\log_{100} 10 = \frac{1}{2}$$

 $\log_2(\log_4 2) = \log_2 1/2 = -1$
 $\log_4[\log_2(256)^2]^2 = \log_4 16^2 = 4$
 $\log_4 8 = \log_{2^2} 2^3 = \frac{3}{2}$

62.
$$\lambda = \log_5(\log_5 3) \Rightarrow 5^{\lambda} = \log_5 3$$

 $3^{k+5^{-\lambda}} = 3^k \cdot 3^{5-\lambda} = 3^k \cdot 3^{\log_3 5} = 5 \cdot 3^k$

63.
$$\log_{10} b^4 = 2\pi \cdot \log_{10} a^2$$

 $\frac{\log_{10} b}{\log_{10} a} = \log_a b = \pi$

64.
$$2^{x} = 3^{y} = 6^{-x} = k \text{ (let)}$$

 $x = \log_{2} k, y = \log_{3} k, z = -\log_{6} k$
 $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \log_{k} 2 + \log_{k} 3 - \log_{k} 6 = 0$

65.
$$(\sqrt{2}-1)^3=5\sqrt{2}-7$$

66.
$$1 + \log_a b = \frac{1}{4} \Rightarrow \log_a b = -\frac{3}{4} \Rightarrow \frac{\frac{1}{3} - \frac{1}{2} \log_a b}{1 + \log_a b} = \frac{17}{6}$$

68. Let
$$\log_y x = t$$

 $5t^2 - 26t + 5 = 0 \Rightarrow (5t - 1)(t - 5) = 0$
Either $x = y^5$ or $y = x^5$

69.
$$1 - \frac{1}{\log_3 x} = \frac{1}{\log_3 x - 1} \Rightarrow (\log_3 x - 1)^2 = \log_3 x \Rightarrow (\log_3 x)^2 - 3\log_3 x + 1 = 0$$

70.
$$\log_2 x + \frac{1}{2} \log_2 y + \frac{1}{2} \log_2 z = 2 \Rightarrow x\sqrt{y}\sqrt{z} = 4$$

 $\log_3 y + \frac{1}{2} \log_3 x + \frac{1}{2} \log_3 z = 2 \Rightarrow \sqrt{x} \cdot y \cdot \sqrt{z} = 9$
 $\log_4 z + \frac{1}{2} \log_4 x + \frac{1}{2} \log_4 y = 2 \Rightarrow \sqrt{x} \cdot \sqrt{y} \cdot z = 16 \Rightarrow xyz = 24$

71.
$$\left(\frac{1}{49}\right) \cdot 2^{\log_7^{1/49}} + 7^{-\log_{1/5}^{5}}$$

 $\frac{1}{49} \times \frac{1}{4} + 7$

72.
$$\log_2(3-x) - \log_2 \frac{1}{\sqrt{2}} + \log_2(5-x) = \frac{1}{2} + \log_2(x+7)$$

$$\Rightarrow \log_2(3-x)(5-x) = \log_2(x+7)$$

$$\Rightarrow x^2 - 9x + 8 = 0 \Rightarrow x = 8$$

73.
$$\log_5 x = \log_x 5 \Rightarrow x = 5, \frac{1}{5}$$

74.
$$|x-1|^{\log_3 x^2 - 2\log_x 9} = (x-7)^7$$

either $x = 2$ or $\log_3 x^2 - 2\log_x 9 = 7$
 $(\log_3 x - 4)(2\log_3 x + 1) = 0$

75.
$$9^{x-1} + 7 = 4(3^{x-1} + 1)$$

Let $3^x = t$
 $\frac{t^2}{9} + 7 = 4\left(\frac{t}{3} + 1\right) \implies t^2 - 12t + 27 = 0$

76. If
$$\alpha > 1$$

$$\log_{\alpha} 10 > \log_{\alpha} 3 > \log_{\alpha} e > \log_{\alpha} 2$$

$$\Rightarrow \log_{10} \alpha < \log_{3} \alpha < \log_{e} \alpha < \log_{2} \alpha$$

(t-3)(t-9)=0

256

Solution of Advanced Problems in Mathematics for JEE

78.
$$\sum_{r=1}^{4} \log_4 2^r = \sum_{r=1}^{4} \frac{r}{2} = 5$$

79.
$$\log_3 2 + \log_3 5 = \log_3 10$$

 $\log_3 9 < \log_3 10 < \log_3 27$

80.
$$\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta$$

$$\frac{k}{2}\left(a^3 + \frac{1}{a^3}\right) = \frac{3}{2}\left(a + \frac{1}{a}\right) - \frac{4}{8}\left(a + \frac{1}{a}\right)^3$$
$$= \frac{-1}{2}\left(a^3 + \frac{1}{a^3}\right)$$

$$\Rightarrow$$
 $k=-1$

81.
$$2x-3>0 \cap x^2-5x-6>0 \cap 2x-3\neq 1$$

 $x>\frac{3}{2}\cap(x-6)(x+1)>0 \cap x\neq 2$
 $\Rightarrow (6,\infty)$

Exercise-2: One or More than One Answer is/are Cornect

1. $6(\log x)^2 + \log x - 1 = 0$

$$(3 \log x - 1)(2 \log x + 1) = 0$$

 $x = 10^{1/3}$ or $x = 10^{-1/2}$

3. $3(\log_{10} 2)x^2 - (1 - \log_{10} 2)x = 2\log_{10} 2 - x$

$$\log_{10} 2(3x^2 + x - 2) = 0$$

$$\log_{10} 2(x+1)(3x-2) = 0$$

Roots of this eq. are $x = -1, \frac{2}{3}$

Sum of coeff. = $2 \log_{10} 2$ (irrational)

Discriminant = $b^2 - 4ac = 25(\log_{10} 2)^2$ (irrational)

4. $A = \min_{x \in \mathbb{R}} (x^2 - 2x + 7) \ \forall \ x \in \mathbb{R}$ $\Rightarrow A = 6$

$$B = \min_{x \in \mathbb{Z}} (x^2 - 2x + 7) \forall x \in [2, \infty) \Rightarrow B = 7$$

Logarithms 257

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

1. If
$$\alpha_1 = 4$$
, then $3^4 \le N < 3^5$

If
$$\alpha_2 = 2$$
, then $5^2 \le N < 5^3$

⇒
$$81 \le N < 125$$

3. If
$$\alpha_1 = 5$$
, then $3^5 \le N < 3^6$

If
$$\alpha_2 = 3$$
, then $5^3 \le N < 5^4$

If
$$\alpha_3 = 2$$
, then $7^2 \le N < 7^3$

$$\Rightarrow \qquad 243 \le N < 343$$

Paragraph for Question Nos. 4 to 5

Sol.
$$|x^2 - y^2| = 221$$

Paragraph for Question Nos. 6 to 7

Sol.
$$(1+4\log_{p^2}(2p))^2+(1+\log_2 p)^2=(1+\log_2 4p)^2$$

Let
$$\log_2 p = t$$

$$\left(1+2\left(\frac{1+t}{t}\right)\right)^2+(1+t)^2=(3+t)^2 \implies t=\log_2 p=2$$

Exercise-4 : Matching Type Problems

1. (A)
$$a = 3((\sqrt{7} + 1) - (\sqrt{7} - 1)) = 6$$

$$b = \sqrt{1296} = 36$$

(B)
$$a = (\sqrt{3} + 1) - (\sqrt{3} - 1) = 2$$

$$b = (3 + \sqrt{2}) - (3 - \sqrt{2}) = 2\sqrt{2}$$

(C)
$$a = (\sqrt{2} + 1), b = (\sqrt{2} - 1)$$

(D)
$$a = 2 + \sqrt{3}, b = 2 - \sqrt{3}$$

Exercise-5: Subjective Type Problems

1.
$$N = 6^{\log_{10} 40} \cdot 6^{2\log_{10} 5} = 6^{\log_{10} 1000} = 6^3 = 216$$

$$2. \qquad \log_b(a^{\log_2 b}) = \log_a(b^{\log_2 b})$$

$$\Rightarrow \log_b a = \log_a b \qquad \Rightarrow a = b \text{ or } a = \frac{1}{b} \text{ (not possible)}$$

$$\log_a (c - (b - a)^2) = 3 \qquad \Rightarrow c = a^3$$

 \Rightarrow Minimum value of c = 8 at a = 2

3. $\log_b 729 = 6 \log_b 3$ if this is an integer, then $b = 3,3^2,3^3,3^6$

4. Case-1: If
$$x + \frac{5}{2} > 1 \implies x > -\frac{3}{2}$$

then $(x-5)^2 < (2x-3)^2 \implies 3x^2 - 2x - 16 > 0 \implies x \in \left(\frac{8}{3}, \infty\right)$
Case-2: If $0 < x + \frac{5}{2} < 1 \implies -\frac{5}{2} < x < -\frac{3}{2}$
then $(x-5)^2 > (2x-3)^2 \implies x \in \left(-2, -\frac{3}{2}\right)$

there is no negative integral value of x.

there is no negative integral value of x.
5.
$$\frac{6}{5}a^{(\log_a x)(\log_{10} a)(\log_a 5)} - 3^{(\log_{10} x - 1)} = 9^{\left(\log_{100} x + \frac{1}{2}\right)}$$

$$6 \cdot 5^{(\log_{10} x - 1)} - 3^{(\log_{10} x - 1)} = 3^{(\log_{10} x + 1)}$$

$$6 \cdot 5^{(\log_{10} x - 1)} = \frac{3^{\log_{10} x}}{3} + 3 \cdot 3^{\log_{10} x}$$

$$6 \cdot 5^{(\log_{10} x - 1)} = \frac{10}{3} \cdot 3^{\log_{10} x}$$

$$\left(\frac{5}{3}\right)^{\log_{10} x - 2} = 1$$

$$\Rightarrow \log_{10} x - 2 = 0$$

$$\Rightarrow x = 100$$

Integer part of log 3 100 is 4.

6.
$$\log_5 \left(\frac{a+b}{3}\right) = \frac{\log_5 a + \log_5 b}{2}$$

$$\Rightarrow \qquad \log_5 \left(\frac{a+b}{3}\right)^2 = \log_5(ab)$$

$$\Rightarrow \qquad (a+b)^2 = 9ab \Rightarrow a^2 - 7ab + b^2 = 0$$

$$a^4 + b^4 + 2a^2b^2 = 49a^2b^2$$

$$\Rightarrow \qquad \frac{a^4 + b^4}{a^2b^2} = 47$$

Logarithms 259

8.
$$\log_{10}\sqrt{1+x} + 3\log_{10}\sqrt{1-x} = 2 + \log_{10}\sqrt{1-x} + \log_{10}\sqrt{1+x}$$
 $\Rightarrow \log_{10}\sqrt{1-x} = 1$
 $\sqrt{1-x} = 10 \Rightarrow x = -99 \text{ (not possible)}$

9. $x^2 = 1 + 6\log_4 y$
 $y^2 - 2^x y - 2^{2x+1} = 0$
 $\Rightarrow y = 2^{x+1} \text{ and } y = -2^x$
if $y = -2^x$ (not possible, because $y > 0$)
if $y = 2^{x+1}$
 $\Rightarrow \log_2 y = x + 1$
 $x^2 = 1 + 3\log_2 y$
 $\Rightarrow x^2 = 1 + 3(x + 1)$
 $x^2 - 3x - 4 = 0$
 $\Rightarrow (x - 4)(x + 1) = 0$
 $x_1 = 4$
 $\Rightarrow y_1 = 2^5 = 32$
 $x_2 = -1$
 $\Rightarrow y_2 = 2^\circ = 1$
 $\log_2 |x_1 x_2 y_1 y_2| = \log_2 |28 = 7$

10. $\log_7 \log_7 \sqrt{7}\sqrt{7}\sqrt{7} = \log_7 \log_7 (7^{7/8}) = \log_{15} \log_{15} (15^{15/16})$
 $= \log_{15} \left(\frac{15}{16}\right) = 1 - 4\log_{15} 2$
 $\Rightarrow b = 4$
Then $a + b = 7$

11. $\log_{1-y} (1 + 2y) + \log_{1-y} (1 + x) = 2$
 $(t + \frac{1}{t} = 2 \Rightarrow t = 1)$
 $1 + x = 1 - y$
 $x = -y$
 $\therefore \log_{1-y} (1 + 2y) + \log_{1-y} (1 - 2y) = 2$

$$\log_{1-y}(1-4y^{2}) = 2$$

$$1-4y^{2} = 1+y^{2}-2y$$

$$5y^{2}-2y = 0$$

$$y = 0, y = \frac{2}{5}$$

But y = 0 rejected.

12.
$$\log_b n = 2$$
$$\log_n (2b) = \log_n 2 + \log_n b = 2$$
$$\log_n 2 + \frac{1}{2} = 2$$
$$\log_n 2 = \frac{3}{2} \implies n = 2^{2/3}$$
if
$$\log_b n = 2 \implies b = n^{1/2} = 2^{1/3}$$
$$n \cdot b = 2^{2/3} \cdot 2^{1/3} = 2$$

13.
$$\log_y x + \frac{1}{\log_y x} = 2$$

$$\Rightarrow \qquad \qquad \log_y x = 1 \Rightarrow x = y$$

$$x^2 + y = 12$$

$$\Rightarrow \qquad \qquad x^2 + x - 12 = 0$$

$$\Rightarrow \qquad \qquad (x+4)(x-3) = 0$$

$$\Rightarrow \qquad \qquad x = -4 \text{ or } x = 3$$
but $x > 0$, then $x = 3$

$$xy = 9$$

14.
$$y^{x} = x^{y}$$
if $x = 2y$ then $y^{2y} = (2y)^{y}$

$$\Rightarrow 2y \log y = y \log(2y)$$
if $y \neq 0$ then $\log y^{2} = \log(2y)$

$$\Rightarrow y^{2} = 2y \Rightarrow y = 2$$

$$x^{2} + y^{2} = 5y^{2} = 20$$

15.
$$(\log_2 4 + \log_2 (4^x + 1)) \log_2 (4^x + 1) = 3$$

Let $\log_2 (4^x + 1) = t$

$$t^2 + 2t - 3 = 0 \Rightarrow t = -3 \text{ or } 1$$

 $\log_2(4^x + 1) = 1 \Rightarrow 4^x = 1 \Rightarrow x = 0$

17.
$$x^2 + 4x + 3 = 0$$
 $(x > 0)$

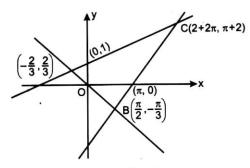
18.
$$\log_{3^{1/4}}(\log_{3\sqrt{5}} x) = 4$$
 $\Rightarrow \log_{3}^{(\log_{3\sqrt{5}} x)} = 1$ $\Rightarrow \log_{5} x = 1$ $\Rightarrow x = 5$

Chapter 17 - Straight Lines

Exercise-1 : Single Choice Problems

1. Let ratio be
$$\lambda:1 \Rightarrow \frac{6\lambda-3}{\lambda+1}=0$$
, $\lambda=\frac{1}{2}$

3.



if $(a, \sin a)$ lie inside the triangle, then $a \in (0, \pi)$

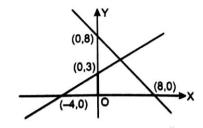
4.
$$x = \frac{711}{13 + 11m} = \frac{9 \times 79}{13 + 11m}$$

if x is an integer, then m = 6

$$6. 7\left(\frac{y}{x}\right)^2 + 2c\left(\frac{y}{x}\right) - 1 = 0$$

$$m_1 + m_2 = 4m_1m_2 \implies c = 2$$

10.



Straight Lines

263

$$\frac{1}{2}a^2 = 72$$

(8, 28)

$$a = \pm 12$$

Centroid \equiv (16, 16) or (-16, -16)

$$g(x) = ax + b$$

$$g(1) = 2$$

$$\Rightarrow$$
 $a+b=2$

$$g(3) = 0$$

$$2a = -2$$

$$a = -1$$

$$b=3$$

$$g(x) = -x + 3$$

$$\cot [\cos^{-1}(|\sin x| + |\cos x|) - \sin^{-1}(|\sin x|) + |\cos x|]$$

$$|\sin x| + |\cos x| \in [1, \sqrt{2}]$$

$$\Rightarrow$$
 cot [cos⁻¹ 1 - sin⁻¹ 1] = 0 = g(3)

15. Points A and B are mirror images about y = x.

Point P will lie on the \perp bisector of line joining A and $B \Rightarrow P$ lie on y = x.

16.
$$4m^3 - 3am^2 - 8a^2m + 8 = 0$$
 $m_2 m_3$

 $m_1 m_2 m_3 = -2$

 $(\because m_1 m_2 = -1)$

18.
$$2x^2 + 3y^2 - 5x \left(\frac{y - mx}{C}\right) = 0$$

Coefficient of x^2 + coefficient of y^2 = 0

$$5 + \frac{5m}{C} = 0 \implies m + C = 0$$

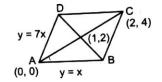
y=mx+C

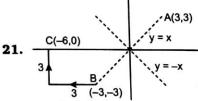
Then the equation of family of line is y = m(x - 1)

264

Solution of Advanced Problems in Mathematics for JEE

20. Equation of line *BC* is y = 7x - 10Equation of line *CD* is y = x + 2Area of rhombus = $\left| \frac{(2-0)(10-0)}{(7-1)} \right| = \frac{10}{3}$





22.
$$y = \frac{3}{4}(x-9) + 6$$

23. Acute angle bisector is

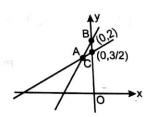
$$\frac{7x-y}{\sqrt{50}} = -\left(\frac{x-y}{\sqrt{2}}\right)$$

7x-y=0 x-y=0

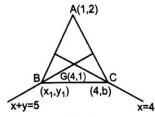
$$\Rightarrow y = 2x$$
24. Either $x = y$ or $x = \left| \frac{3x + 4y - 12}{5} \right|$ or $y = \left| \frac{3x + 4y - 12}{5} \right| \Rightarrow (1, 1)$

25. Co-ordinate of point $A\left(-\frac{1}{7}, \frac{10}{7}\right)$

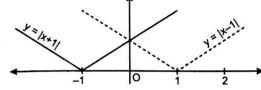
Ar
$$(\triangle ABC) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{7} = \frac{1}{28}$$



26.



Co-ordinate of centroid $G(4, 1) \Rightarrow \frac{x_1 + 4 + 1}{3} = 4$ $\Rightarrow x_1 = 7 \text{ and } y_1 = -2$ 27



Q(4,5)

The image of y = |x-1| w.r.t. y-axis is $y = |x+1| \Rightarrow y = \pm(x+1)$ Required solution = (y - (x+1))(y + (x+1)) = 0

28.

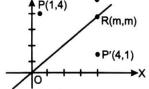
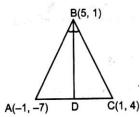


Image of (1, 4) about the line y = x is (4, 1) $\Rightarrow P'(4, 1) Q(4, 5)$ and R(m, m) are collinear.

$$\Rightarrow$$
 $m=4$

29.
$$\frac{AD}{CD} = \frac{AB}{BC} = \frac{10}{5} = \frac{2}{1}$$



30.
$$4c\left(\frac{y}{x}\right)^2 - \left(\frac{y}{x}\right) + 6 = 0$$
 has one root is $-\frac{3}{4} \Rightarrow c = -3$

33.

$$\frac{x}{a} + \frac{y(a+c)}{2ac} + \frac{1}{c} = 0$$

⇒

$$a(y+2) + c(2x + y) = 0$$

Passes through a fixed point (1, -2)

34.

$$\frac{1}{b} \left(\frac{y}{x} \right)^2 + \frac{2}{h} \left(\frac{y}{x} \right) + \frac{1}{a} = 0$$

$$3m = -\frac{2b}{h}$$
 and $2m^2 = \frac{b}{a} \Rightarrow \frac{ab}{h^2} = \frac{9}{8}$

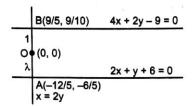
35. Equation of line is

$$\frac{x}{2h} + \frac{y}{2k} = 1$$

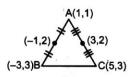
if it passes through fixed point (x_1, y_1)

$$\frac{x_1}{2h} + \frac{y_1}{2k} = 1$$

36. $OA:OB=\lambda:1 \Rightarrow \lambda=\frac{4}{3}$



37. $G\left(1,\frac{7}{3}\right)$



- 38. Diagonals are perpendicular.
- **39.** Let point on the line x + y = 4 is (a, 4 a).

$$\left| \frac{4(a) + 3(4 - a) - 10}{5} \right| = 1 \implies a^2 + 4a - 21 = 0$$

$$\Rightarrow a_1 + a_2 = -4 \Rightarrow b_1 + b_2 = 12$$

40. Equation of altitude on BC

$$x + 4y = 13$$

Equation of altitude on AB

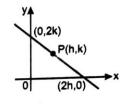
$$7x - 7y + 19 = 0$$

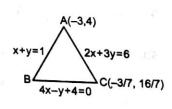
$$H\left(\frac{3}{7}, \frac{22}{7}\right)$$

41. Equation of line is $(3x + 4y + 5) + \lambda(4x + 6y - 6) = 0$

$$\Rightarrow \frac{-(3+4\lambda)}{4+6\lambda} \times \frac{7}{5} = -1 \Rightarrow \lambda = \frac{1}{2}$$

42.
$$\frac{5-1}{8-2} = \frac{7-5}{x-8} \implies x = 11$$





Straight Lines

267

43. PQ(8,0) R(7,5)

$$\Rightarrow S(-2,4)$$

44. Area =
$$\frac{1}{2} \begin{vmatrix} a & a & 1 \\ a+1 & a+1 & 1 \\ a+2 & a & 1 \end{vmatrix} = 1$$

45.
$$(x-y)^2 = 1$$

$$\Rightarrow x-y=1$$
 and $x-y+1=0$

46. AB subtend an acute angle at point C, then

$$a^{2} + (a+1)^{2} > 4$$

$$a \in \left(-\infty, \frac{-\sqrt{7} - 1}{2}\right) \cup \left(\frac{\sqrt{7} - 1}{2}, \infty\right)$$

48.

$$h = \cos \theta$$
$$k = 2\sin \theta$$

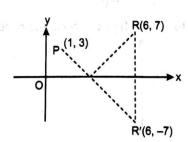
$$h^2 + \frac{k^2}{4} = 1$$

$$\Rightarrow 4x^2 + y^2 = 4$$

50. Let the point of reflection is (h, k).

$$\frac{h-a}{1} = \frac{k-0}{-t} = \frac{-2(a+at^2)}{1+t^2} \Rightarrow x = -a$$

51.

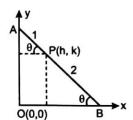


52. Let (x, y) and (X, Y) be the old and the new coordinates, respectively. Since the axes are rotated in the anticlockwise direction, $\theta = +60^{\circ}$. Therefore,

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos 60^{\circ} & -\sin 60^{\circ} \\ \sin 60^{\circ} & \cos 60^{\circ} \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}$$

⇒

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}$$



268

$$\begin{vmatrix} x \\ y \end{vmatrix} = \begin{bmatrix} \frac{X}{2} - \frac{\sqrt{3}}{2}Y \\ \frac{\sqrt{3}}{2}X + \frac{Y}{2} \end{bmatrix}$$

$$\Rightarrow \qquad x = \frac{X}{2} - \frac{\sqrt{3}}{2}Y \text{ and } y = \frac{\sqrt{3}}{2}X + \frac{Y}{2}$$

$$\Rightarrow \qquad \left(\frac{X}{2} - \frac{\sqrt{3}}{2}Y\right)^2 - \left(\frac{\sqrt{3}}{2}X + \frac{Y}{2}\right)^2 = a^2$$

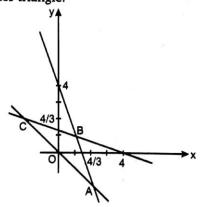
$$\Rightarrow \qquad (X^2 + 3Y^2 - 2\sqrt{3}XY) - (3X^2 + Y^2 + 2\sqrt{3}XY) = 4a^2$$

$$\Rightarrow \qquad -2X^2 + 2Y^2 - 4\sqrt{3}XY = 4a^2$$

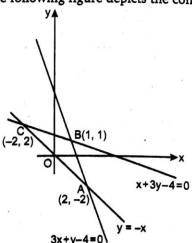
$$\Rightarrow \qquad Y^2 - X^2 - 2\sqrt{3}XY = 2a^2$$

which is the required equation.

53. The following figure depicts the condition. By observation from the figure, $\triangle ABC$ is clearly an obtuse angled and isosceles triangle.



Alternate solution: The following figure depicts the condition.



From the figure, we get

$$A: 3x + y = 4$$
 and $y = -x \Rightarrow x = 2$; $y = -2$

B:(1,1) by solving the equations.

$$C: x + 3y - 4 = 0$$
 and $y = -x \Rightarrow x = -2$; $y = 2$

Thus,

$$AB = BC = \sqrt{1+9} = \sqrt{10}$$

$$AC = \sqrt{4^2 + 4^2} = 4\sqrt{2}$$

$$\cos B = \frac{10 + 10 - 16(2)}{2(\sqrt{10})(\sqrt{10})} < 0$$

Therefore, the given triangle is isosceles and obtuse angled triangle.

56.
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{y_3 - y_2}{x_3 - x_2} \Rightarrow \text{Points are collinear.}$$

57.
$$3h = a\cos t + b\sin t + 1$$

$$3k = a\sin t - b\cos t$$

$$\Rightarrow (3h-1)^2 + (3k)^2 = (a\cos t + b\sin t)^2 + (a\sin t - b\cos t)^2 = a^2 + b^2$$

58. Equation of line
$$\frac{x}{a} + \frac{y}{-1-a} = 1$$
.

Lines passes from (4, 3).

62. The given triangle is equilateral. Therefore, the orthocentre of the triangle is same as centroid of the triangle. Thus, the orthocentre, that is, the centroid is given by

$$\left(\frac{5+0+(5/2)}{3}, \frac{0+0+(5\sqrt{3}/2)}{3}\right) \equiv \left(\frac{5}{2}, \frac{5}{2\sqrt{3}}\right)$$

63. Using homogenization,

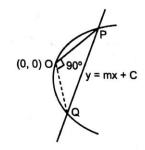
$$3x^2 - y^2 - 2x\left(\frac{y - mx}{C}\right) + 4y\left(\frac{y - mx}{C}\right) = 0$$

Coefficient of x^2 + Coefficient of y^2 = 0

$$\left(3+\frac{2m}{C}\right)+\left(-1+\frac{4}{C}\right)=0$$

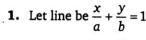
$$C = -m - 2$$





270

Exercise-2: One or More than One Answer is/are Correct



$$a+b=9$$
 and $ab=20$

$$\Rightarrow$$
 $a=5, b=4$

or
$$a=4$$
, $b=$

2. Centroid is
$$\left(4, \frac{4}{3}\right)$$
.

3.
$$\begin{vmatrix} 2 & 3 & -5 \\ t^2 & t & -6 \\ 3 & -2 & -1 \end{vmatrix} = 0 \implies t^2 + t - 6 = 0$$

$$b\left(\frac{y}{x}\right)^2 + 6\left(\frac{y}{x}\right) + a = 0$$

$$bm^2 + 6m + a = 0$$

if m = 1 is root of the equation

$$\Rightarrow$$
 $a+b=-6$

if m = -1 is root of the equation

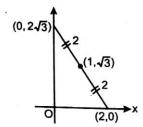
$$\Rightarrow$$
 $a+b=6$

6. Co-ordinate of other two points

$$(1\pm 2\cos\theta,\sqrt{3}\pm 2\sin\theta)$$

$$\left(1\pm 2\left(\frac{\sqrt{3}}{2}\right), \sqrt{3}\pm 2\left(\frac{1}{2}\right)\right)$$

$$(1+\sqrt{3},\sqrt{3}+1)$$
 and $(1-\sqrt{3},\sqrt{3}-1)$



8. Image of
$$A(3, -1)$$
 about angle bisector $x - 4y + 10 = 0$ is $A'(a, b)$.

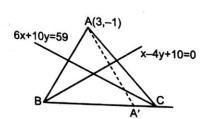
$$\frac{a-3}{1} = \frac{b+1}{-4} = \frac{-2(3+4+10)}{17}$$

Let point
$$B\left(x_1, \frac{x_1+10}{4}\right)$$
 on the line $x-4y+10=0$

If mid-point of AB lie on the line 6x + 10y = 59

$$6\left(\frac{x_1+3}{2}\right)+10\left(\frac{x_1+10-4}{8}\right)=59$$

$$\Rightarrow$$



27

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 3 to 4

- 3. x + y = 2 and x 3y = 6Meet at (3, -1)
- **4.** Image of A(2, -4) about x + y = 2 lie on BC.

$$\frac{x_2-2}{1} = \frac{y_2+4}{1} = -2\left(\frac{-4}{2}\right)$$

$$\Rightarrow$$
 $x_2 = 6, y_2 = 0$

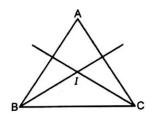
Image of A(2, -4) about x - 3y = 6 lie on BC.

$$\frac{x_3-2}{1} = \frac{y_3+4}{-3} = -2\frac{8}{10}$$

$$\Rightarrow x_3 = \frac{2}{5}, y_3 = \frac{4}{5}$$

Equ. of line BC, x + 7y = 6

$$\Rightarrow B\left(\frac{4}{3},\frac{2}{3}\right) \text{ and } C(6,0)$$



Exercise-4: Matching Type Problems

- 2. (A) $\sum_{r=1}^{n+1} ({}^{1}C_{r-1} + {}^{2}C_{r-1} + {}^{3}C_{r-1} + \dots + {}^{n}C_{r-1})$ $= \sum_{r=1}^{n+1} {}^{1}C_{r-1} + \sum_{r=1}^{n+1} {}^{2}C_{r-1} + \sum_{r=1}^{n+1} {}^{3}C_{r-1} + \dots + \sum_{r=1}^{n+1} {}^{n}C_{r-1}$ $= 2^{1} + 2^{2} + 2^{3} + \dots + 2^{n} = 2(2^{n} 1)$
 - (B) Family of line $(x + y + 2) + \lambda(2x y + 4) = 0$ always passes from (-2, 0). If almost one tangent can be drawn from (-2, 0) then

$$S_1 = 4 - 8g - 36 + 4g^2 \le 0$$
$$g^2 - 2g - 8 \le 0$$

(C) $2\sin 7x \cdot \cos 2x = \cos 2x$

$$\Rightarrow \cos 2x = 0 \quad \text{or} \quad \sin 7x = \frac{1}{2}$$

$$x = \frac{\pi}{4}, \frac{3\pi}{4}$$
 $7x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}, \frac{17\pi}{6}, \frac{25\pi}{6}, \frac{29\pi}{6}, \frac{37\pi}{6}, \frac{41\pi}{6}$

(D) $a + b = \tan 65^{\circ} \tan 70^{\circ} - \tan 65^{\circ} - \tan 70^{\circ}$

$$\tan 135^\circ = \frac{\tan 65^\circ + \tan 70^\circ}{1 - \tan 65^\circ + \tan 70^\circ} = -1$$

$$\Rightarrow$$
 tan 65° tan 70° - tan 65° - tan 70° = 1

3. (A)
$$\cos 40^{\circ} - 2 \cos 40^{\circ} \sin 10^{\circ} = \cos 40^{\circ} - (\sin 50^{\circ} - \sin 30^{\circ})$$

(B)
$$\begin{vmatrix} 1 & 1 & 1 \\ 3 & 2\lambda & 4 \\ 1 & 1 & -3\lambda \end{vmatrix} = 0 \implies (3-2\lambda)(1+3\lambda) = 0$$

(C)
$$\begin{vmatrix} k & 2-2k & 1 \\ -k+1 & 2k & 1 \\ -4-k & 6-2k & 1 \end{vmatrix} = 0 \implies 2k^2 + k - 1 = 0$$

$$\Rightarrow k = -1, \frac{1}{2}$$

(D)
$$\sum_{k=3}^{\infty} \left(\frac{1}{2}\right)^k = \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^4 + \left(\frac{1}{2}\right)^5 + \dots = \frac{1}{4}$$

Exercise-5: Subjective Type Problems

1.
$$\Delta = 132$$

2.

$$ax + by + c = 3x - 4y + c$$

=

$$a = 3, b = -4$$

Distance of 3x - 4y + c from A(3, 1) is 1.

⇒

$$\frac{9-4+c|}{5}=1$$

$$|c + 5| = 5$$

Also, 3x-4y+c=0 and 3x-4y+5=0 lie on same side of A

$$\Rightarrow$$

$$c + 5 > 0$$

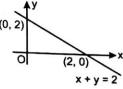
$$c+5=5 \implies c=0$$

$$xy(x+y-2)=0$$

$$\alpha + \alpha^4 - 2 \le 0$$

$$(\alpha > 0)$$

$$\alpha = 1$$

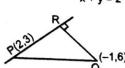


5.
$$PQ = 3\sqrt{2}$$

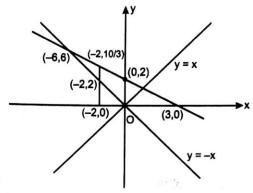
$$QR \leq PQ$$

6.
$$x^2(y^2-x^2)=0$$

has 3 different lines x = 0, y = x and y = -x.



Straight Lines 273



9. Describe a circle whose diameter is AB.

$$\therefore \quad \text{centre} = (1,0)$$

Radius = 2

Let 'm' the slope of the line passing through (4, 1).

$$(y-1) = m(x-4)$$
 intersect the circle

⊥ distance from centre < radius of circle.

$$\left|\frac{-3m+1}{\sqrt{m^2+1}}\right| < 2$$

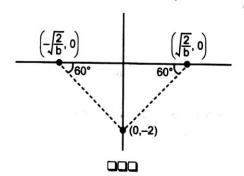
$$9m^2 - 6m + 1 < 4m^2 + 4$$

$$m \in \left(\frac{6 - \sqrt{96}}{10}, \frac{6 + \sqrt{96}}{10}\right) - \left\{\frac{1}{5}, 1\right\}$$

$$\lambda_1 + \lambda_2 = \frac{12}{10} = \frac{6}{5}$$

$$5(\lambda_1 + \lambda_2) = 6$$

10.
$$\sqrt{\frac{2}{b}} = \frac{2}{\sqrt{3}} \implies b = \frac{3}{2}$$



Chapter 18 - Circle

● Exercise-1 : Single Choice Problems

1.
$$CP = \frac{\sqrt{3}}{2} = \sqrt{(h-1)^2 + (k-1)^2}$$

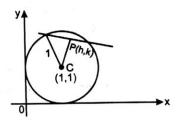
Locus of point P(h, k) is

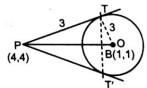
$$(x-1)^2 + (y-1)^2 = \frac{3}{4}$$

2.
$$\sqrt{d^2 - (r_1 - r_2)^2} = 15$$
; $\sqrt{d^2 - (r_1 + r_2)^2} = 5 \implies r_1 r_2 = 50$

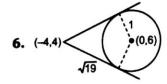
4.
$$PT = \sqrt{16 + 16 - 8 - 8 - 7} = 3$$

$$\Rightarrow TT' = 2BT = 2 \cdot 3\cos 45^{\circ} = 3\sqrt{2}$$





5. It will be circle with diametric ends as (1, 1) and (4, 2) *i.e.*, point of intersection.



8. Let centroid be (h, k).

$$\Rightarrow h = \frac{\cos \alpha + \sin \alpha + 1}{3}, \quad k = \frac{\sin \alpha - \cos \alpha + 2}{3}$$

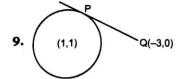
$$\Rightarrow 3h-1=\cos\alpha+\sin\alpha, 3k-2=\sin\alpha-\cos\alpha$$

$$\Rightarrow$$
 $(3h-1)^2 + (3k-2)^2 = 2$

$$\Rightarrow \left(x-\frac{1}{3}\right)^2 + \left(y-\frac{2}{3}\right)^2 = \frac{2}{9}$$

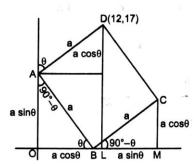
Circle

275



Length of tangent = $PQ = \sqrt{4^2 + 1^2 - 5} = \sqrt{12}$

10.

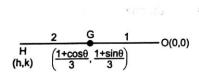


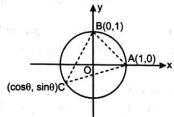
$$OA = a \sin \theta = 12$$
, $DL = a \sin \theta + a \cos \theta = 17$

$$a\cos\theta=5$$

$$C = (a\cos\theta + a\sin\theta, a\cos\theta) = (17, 5)$$

12. Centroid divide the line joining orthocentre and circumcentre in 2:1.





$$\Rightarrow h = 1 + \cos \theta, k = 1 + \sin \theta$$

$$(x-1)^{2} + (y-1)^{2} = 1$$

13. Co-ordinate of centre is C(1, 1).

$$(x-1)^2 + (y-1)^2 = 1$$

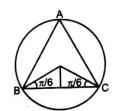
 $x^2 + y^2 - 2x - 2y + 1 = 0$

276

Solution of Advanced Problems in Mathematics for JEE

14.
$$a = 2R \cos \frac{\pi}{6}$$

 $\Rightarrow a = 4\sqrt{3} \text{ cm}$
Area of $\triangle ABC = \frac{\sqrt{3}}{4} a^2 = 12\sqrt{3} \text{ cm}^2$



 $x^2 + y^2 - 10x = 0$

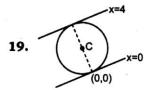
15. Image of centre $C_1(5,0)$ about the line y = x + 3 is

$$\frac{x_2 - 5}{1} = \frac{y_2 - 0}{-1} = \frac{-2(5 + 3)}{1^2 + 1^2}$$

 $C_2(-3,8)$

Equation of reflected circle is

$$(x+3)^2 + (y-8)^2 = 25$$



20. Let the equation of line is 3x + 4y = C

$$\left|\frac{C}{5}\right| = 3 \implies C = 15 \text{ (in first quadrant)}$$

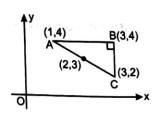
- **21.** $C_1(5,0), C_2(3,-1), C_3(3/2,2)$ do not lie on straight line.
- **22.** Let equation of diameter is 3x + 5y = C

$$(x+1)(x-2)+(y-2)(y-3)+\lambda(x-3y+7)=0$$

If its radius is $\sqrt{5}$.

$$\Rightarrow$$
 $\lambda = \pm 1$

25. Equation of circle is (x-1)(x-3) + (y-4)(y-2) = 0



26. Equation of tangent at O(0,0).

$$x(0) + y(0) + g(x+0) + f(y+0) = 0$$

$$gx + fy = 0$$

Circle

277

27. Equation of normal at O(0,0)

$$y = -x$$

$$Centre\left(0 \pm \left(-\frac{1}{\sqrt{2}}\right), 0 \pm \left(\frac{1}{\sqrt{2}}\right)\right)$$

$$Either\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) or\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$$

28. Here, $C_1C_2 = r_1 + r_2$

(Condition for external touch)

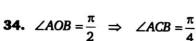
- 30. The triangle is right angled and the radical centre will be the orthocentre of the triangle.
- **32.** Equation of common chord is 6x + 14y + (l + m) = 0If it passes through (1, -4). Then, l + m = 50

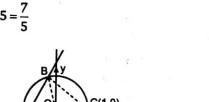
$$x^2 + y^2 - 6x + 8y = 0$$

Distance of line from centre

$$\left| \frac{9-16-25}{5} \right| = \frac{32}{5}$$

Shortest distance =
$$\frac{32}{5} - 5 = \frac{7}{5}$$





/ y=7x+5

37. Equation of required circle:

$$S:(x-1)^2+(y-1)^2+\lambda(x-y)=0$$

$$S': x^2 + y^2 + 2y - 3 = 0$$

Common chord of S = 0 and S' = 0 is S - S' = 0

$$(\lambda-2)x-(\lambda+4)y+5=0$$

Centre of S': (0, -1) lies on common chord $\Rightarrow \lambda = -9$

$$S:(x-1)^2+(y-1)^2-9(x-y)=0$$

$$r = \frac{9}{\sqrt{2}}$$

- **40.** Point lie inside the circle $k^2 + (k+2)^2 < 4 \Rightarrow 2k^2 + 4k < 0; -2 < k < 0$
- 41. The length of the normal is

$$y\sqrt{1+\left(\frac{dy}{dx}\right)^2}$$

The length of radius vector of a point (x, y) on the curve is |xi + yi|, that is $\sqrt{x^2 + y^2}$, it is given that

$$\sqrt{x^2 + y^2} = |y| \sqrt{1 + (y')^2}$$

Squaring on both sides of this equation, we get

$$x^2 + y^2 = y^2[1 + (y')^2]$$

$$\Rightarrow x^2 + y^2 = y^2 + y^2 \left(\frac{dy}{dx}\right)^2$$

$$\Rightarrow x^2 = \left(y\frac{dy}{dx}\right)^2$$

$$\Rightarrow \qquad y \frac{dy}{dx} = x \text{ or } y = \frac{dy}{dx} = -x$$

Now,
$$y \frac{dy}{dx} = x$$

$$\Rightarrow \qquad \qquad y \, dy = x \, dx$$

Integrating on both sides, we get

$$\frac{y^2}{2} = \frac{x^2}{2} + c$$

$$\Rightarrow x^2 - y^2 = 2c \text{ or } x^2 - y^2 = \text{constant}$$

This answer does not exist in the given options. So, consider the other alternative.

$$y dy = -x dx$$

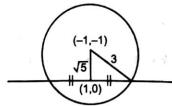
Integrating on both sides, we get

$$\frac{y^2}{2} = -\frac{x^2}{2} + c$$

$$\Rightarrow$$
 $x^2 + y^2 = \text{constant}$

and this constant is > 0 in practical sense.

44. Length of chord = $2\sqrt{3^2 - 5} = 4$



Circle 2 Circle 27

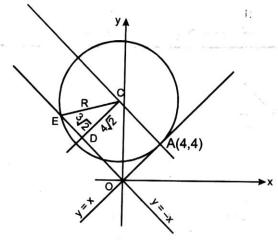
47. Family of circles touching the line y = x at the point (4, 4) is

$$(x-4)^2 + (y-4)^2 + \lambda(y-x) = 0$$

We need to find the member of this family which has length of chord = $6\sqrt{2}$ on x + y = 0. For different λ 's, we get different circles.

$$x^{2} + y^{2} - 8x - 8y + 32 + \lambda y - \lambda x = 0$$

$$x^{2} + y^{2} + x(-8 - \lambda) + y(-8 + \lambda) + 32 = 0$$
 ...(1)



Now,

$$OA = DC = 4\sqrt{2}$$

 $DE = 3\sqrt{2} = \frac{6\sqrt{2}}{2}$ (given)

Therefore,

$$R^2 = (3\sqrt{2})^2 + (4\sqrt{2})^2$$

$$\Rightarrow \frac{\lambda^2}{2} = 50 \Rightarrow \lambda^2 = 100 \Rightarrow \lambda = \pm 10$$

Substituting $\lambda = -10$ in eq. (1), we get

$$x^2 + y^2 + 2x - 18y + 32 = 0$$

[Substituting $\lambda = 10$; in eq. (1); we get $x^2 + y^2 - 18x + 2y + 32 = 0$, which does not exist in the given options]

Note: From eq. (1), we get

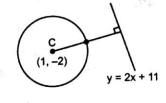
$$R^2 = (\text{Radius})^2 = g^2 + f^2 - c = \frac{(\lambda + 8)^2}{4} + \frac{(\lambda - 8)^2}{4} - 32 = \frac{\lambda^2}{2}$$

48. Slope of line normal to circle and perpendicular to line

$$m = -\frac{1}{2} = \tan \theta$$

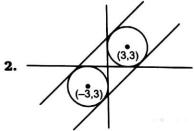
Co-ordinate of point lie on normal at a dist. of 3 from centre

$$\left(1\pm 3\left(\frac{-2}{\sqrt{5}}\right), -2\pm 3\left(\frac{1}{\sqrt{5}}\right)\right)$$



*

Exercise-2: One or More than One Answer is/are Correct



3.
$$x^2 + y^2 - x\left(\frac{\pi}{2}\right) + y\left(\frac{\pi}{2} - 2\sin^{-1}\alpha\right) = 0$$

$$\Rightarrow \qquad \text{Length of chord} = 2\sqrt{\left(\frac{\pi}{4}\right)^2 + \left(\frac{\pi}{4} - \sin^{-1}\alpha\right)^2}$$

7. $(x+2)^2 + (y-3)^2$ is nothing but square of distance between (x, y) and (-2, 3) where (x, y) is point lies on the circle.

Centre =
$$(-4, 5)$$
, $r = \sqrt{16 + 25 + 40} = 9$

Clearly, (-2,3) is lies inside the circle.

$$\therefore PC = 2\sqrt{2}$$

$$a = PA^2 = (9 + 2\sqrt{2})^2$$

$$b = PB^2 = (9 - 2\sqrt{2})^2$$

$$a+b=178, a-b=72\sqrt{2}$$

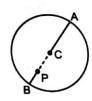
8. Let point of intersection P(h, k)

Equation of chord of contact is

$$hx + ky = a^2$$

If it is tangent to $x^2 + y^2 - 2ax = 0$

$$\Rightarrow \left| \frac{ha - a^2}{\sqrt{h^2 + k^2}} \right| = a$$



Circle

281

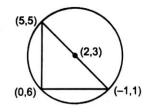
9. Equation of tangent to circle

$$y-3 = \frac{3}{2}(x-2) \pm \sqrt{13}\sqrt{1 + \frac{9}{4}}$$

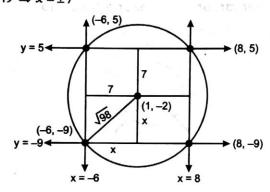
$$\Rightarrow 2y = 3x + 13, \quad 2y = 3x - 13$$

$$\frac{x_2 - 2}{3} = \frac{y_2 - 3}{2} = -\left(\frac{13}{13}\right) \quad \Rightarrow (-1, 5)$$

$$\frac{x_3 - 2}{3} = \frac{y_3 - 3}{-2} = -\left(\frac{-13}{13}\right) \quad \Rightarrow (5, 1)$$



10. $2x^2 = 98 \Rightarrow x^2 = 49 \Rightarrow x = \pm 7$

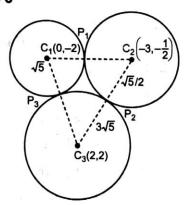


Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

Sol.
$$P_1(-2, -1)$$

 $P_2\left(-\frac{16}{7}, -\frac{1}{7}\right)$
 $P_3\left(\frac{1}{2}, -1\right)$



Paragraph for Question Nos. 4 to 6

4.
$$S: x^2 + y^2 + x(2\lambda - 9) + y(3\lambda - 12) + 53 - 27\lambda = 0$$

 $C: x^2 + y^2 - 4x - 6y - 3 = 0$

282

Equation of line: S-C=0

or
$$x(2\lambda - 5) + y(3\lambda - 6) + 56 - 27\lambda = 0$$

or
$$5x + 6y - 56 = 0$$
 or $2x + 3y - 27 = 0$

$$\Rightarrow \qquad x=2, \quad y=\frac{23}{3}$$

5. Centre of *C* lies on common chord of *S* and *C*.

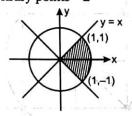
$$\Rightarrow$$
 (2,3) lies on $x(2\lambda - 5) + y(3\lambda - 6) + 56 - 27\lambda = 0$

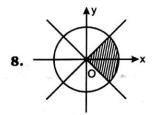
$$\Rightarrow S: x^2 + y^2 - 5x - 6y - 1 = 0$$

6. Difference of squares of lengths of tangents from A and B is 3, which is equal to $|AP|^2 - BP^2|$.

Paragraph for Question Nos. 7 to 8

7. Max. dist. between any two arbitrary points = 2





Paragraph for Question Nos. 9 to 10

Sol. Let
$$P(h, k)$$

$$L_1 = \sqrt{h^2 + k^2 - 4}$$

$$L_2 = \sqrt{h^2 + k^2 - 4h}$$

$$L_3 = \sqrt{h^2 + k^2 - 4k}$$

If
$$L_1^4 = L_2^2 L_3^2 + 16$$

$$\Rightarrow (h^2 + k^2 - 4)^2 = (h^2 + k^2 - 4h)(h^2 + k^2 - 4k) + 16$$

$$\Rightarrow (h+k)(h^2+k^2-2h-2k)=0$$

$$C_1: x+y=0$$

$$C_2: x^2 + y^2 - 2x - 2y = 0$$

Circle 283

Exercise-5 : Subjective Type Problems

1. Equation of chord of contact w.r.t. P

$$hx + ky = 1$$

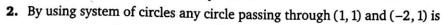
Equation of common chord is

$$(\lambda - 3)x + (2\lambda + 2)y + 3 = 0$$

 \Rightarrow

$$\frac{\lambda - 3}{h} = \frac{2\lambda + 2}{k} = -3$$

 \Rightarrow Equation of locus is 6x - 3y - 8 = 0



$$(x-1)(x+2)+(y-1)^2+\lambda(y-1)=0$$
 ...(1)

Given circles

$$x^2 + y^2 - 1 = 0$$
 ...(2)

Now radical axis of (1) and (2) is

$$(x-2y) + \lambda(y-1) = 0$$
 ...(3)

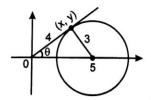
 \therefore Radical centre of given circles is (0,0).

So, eq. (3) is passing through (0,0).

$$\lambda = 0$$

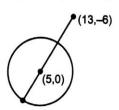
Put $\lambda = 0$ in eq. (1) we get required circle.

3.
$$\frac{y}{x} = \tan \theta = \frac{3}{4}$$



4.
$$x^2 + y^2 - 26x + 12y + 210$$

$$(x-13)^2+(y+6)^2+5$$



5.
$$S = x^2 + y^2 + 2gx + 2fy + c = 0$$

$$\Rightarrow \qquad 2g + 2f = -c - 2$$

...(1)

(1, 1) satisfy circle.

$$\Rightarrow$$

$$2g+2f+c=-2$$

$$c = 0$$

Solution of Advanced Problems in Mathematics for JEE

$$\frac{g+f=-1}{4}$$

and g+f=-1 \therefore Length of tangent = $\sqrt{8+4g+4f+c}=2$

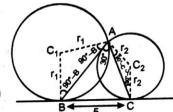
6. Length of common external tangent

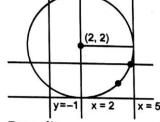
$$\sqrt{d^2 - (r_1 - r_2)^2} = 5$$

$$\cos(90^{\circ} - B + 90^{\circ} - C + 30^{\circ}) = \cos 60^{\circ}$$

$$=\frac{r_1^2+r_2^2-d^2}{2r_1r_2}$$

...(1)

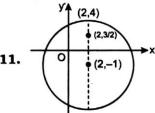




From diagram common points are 3.

10.
$$(C_1C_2)^2 = r_1^2 + r_2^2$$

$$18 = 2r^2 \implies r^2 = 9$$



12.
$$PQ = PA = PB$$

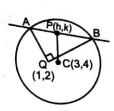
$$\sqrt{(h-1)^2 + (k-2)^2} = \sqrt{6^2 - (h-3)^2 - (k-4)^2}$$

$$\Rightarrow h^2 + k^2 - 4h - 6k - 3 = 0$$

13.
$$c=3$$
, $a^2+b^2=36$

Length of chord $AB = 2\sqrt{r^2 - p^2}$

$$c = 2\sqrt{c - \left(\frac{2c}{\sqrt{a^2 + b^2}}\right)^2} = 2\sqrt{2}$$

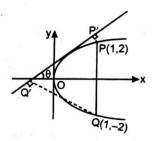


Chapter 19 - Parabola

Exercise-1: Single Choice Problems

1.
$$P'Q' = PQ\cos(90^{\circ} - \theta)$$

 $= \frac{4}{\sqrt{t^2 + 1}}(t^2 < 1)$
 $(P'Q')_{\min} = 2\sqrt{2}$



2. Equation of circle with SP as diameter

$$(x-4)\left(x-\frac{9}{4}\right) + y(y-6) = 0$$

Centre
$$\left(\frac{25}{8}, 3\right)$$
 and radius = $\frac{25}{8}$

Equation of normal at P(4,6) is

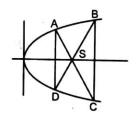
$$4x + 3y = 34$$

Length of chord =
$$2\sqrt{\left(\frac{25}{8}\right)^2 - \left(\frac{25}{8} + 9 - 34\right)^2} = \frac{15}{4}$$

3. The diagonals are the focal chord.

$$AS = 1 + t^2 = c \text{ (say)}$$

$$\frac{1}{c} + \frac{1}{\left(\frac{25}{4} - c\right)} = 1 \qquad \left(\because \frac{1}{AS} + \frac{1}{CS} = \frac{1}{a}\right)$$



286

$$A\left(\frac{1}{4},1\right)$$
, $B(4,4)$, $C(4,-4)$ and $D\left(\frac{1}{4},-1\right)$

Area of trapzium = $\frac{1}{2}(2+8) \times \frac{15}{4}$

4. For normal chord $t_2 = -t_1 - \frac{2}{t_1}$

Also chord substends an angle of 90° at the vertex

$$t_1t_2 = -4 \quad \Rightarrow \quad t_2^2 = 8$$

9. $(y-x+2)+\lambda(y+x-2)=0$

The family of lines passes through (2,0).

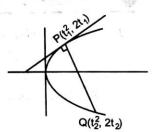
The chord is x = 2 and end points are $(2, \pm 4)$.

10.
$$t_2 = -t_1 - \frac{2}{t_1}$$

$$h = \frac{t_1^2 + t_2^2}{2} \text{ and } k = \frac{2t_1 + 2t_2}{2}$$

Put the value of t_2 and eliminate t_1 we get

$$h-2=\frac{4}{k^2}+\frac{k^2}{2}$$
 $\Rightarrow a=2, b=4, c=2$



11. The parabola is $(y-1)^2 = 4(x-1)$. The coordinates of $P(1+t_1^2, 1+2t_1)$ and $Q(1+t_2^2, 1+2t_2)$.

Here S(2, 1) is the focus. The coordinates of T are G.M. of abscissa and A.M. of ordinates of P and Q.

$$\Rightarrow ST^2 = 16 \qquad \therefore SP \cdot SQ = ST^2$$

12. Let $P(t_1)$ and $Q(t_2)$ are point of $y^2 = 8x$

$$2t_1^2 + 2t_2^2 = 17$$
 and $(2t_1^2)(2t_2^2) = 11$
 $ST^2 = SP \cdot SQ = 2(1 + t_1^2) 2(1 + t_2^2) = 34 + 4 + 11$
 $ST = \sqrt{49}$

13.
$$ay = x^2$$
 $\Rightarrow \frac{-1}{\left(\frac{dy}{dx}\right)} = \frac{-a}{2x_1} = -\frac{A}{B}$ (slope of normal)

$$\Rightarrow$$
 $x_1 = \frac{aB}{2A}$ and $y_1 = \frac{1}{B} - \frac{a}{2}$ put (x_1, y_1) in $ay = x^2$

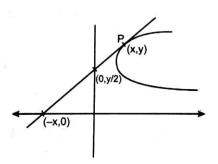
Parabola		287

14.

$$\frac{dy}{dx} = \frac{y}{2x}$$
$$\frac{2dy}{y} = \frac{1}{x}dx$$

 $\Rightarrow 2\log y = \log x + \log c$

$$\Rightarrow$$
 $y^2 = cx$ put (3, 1)



15.

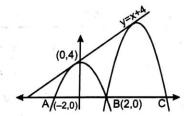
$$(x-\alpha)^2 = -(y-(\alpha+4))$$

The curve passes through (2,0)

$$(2-\alpha)^2 = -(0-(\alpha+4))$$

$$\alpha^2 - 5\alpha = 0 \implies \alpha = 0 \text{ or } \alpha = 5$$

$$(x-5)^2 = -(y-9)$$
 put $y=0 \Rightarrow x=2,8$

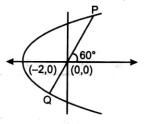


16. $y = (\tan 60^\circ) x$ is the focal chord.

Coordinates of P and Q are intersection of $y = \sqrt{3} x$ with parabola

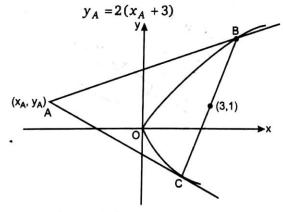
$$P(4, 4\sqrt{3}), Q\left(-\frac{4}{3}, \frac{-4}{\sqrt{3}}\right)$$

Find \perp bisector of PQ.



17. The director circle of the parabola is its directrix (x + 11 = 0). Now apply condition of tangency.

18. The following figure depicts the condition. Chord of contact of a point $A(x_A, y_A)$ with respect to $y^2 = 4x$ is $y_A y = 2(x + x_A)$. Since this chord passes through the point (3, 1), we have



AB and AC are tangents to the parabola.

BC is chord of contact of point A with respect to the parabola $y^2 = 4ax$.

Given that point A lies on $x^2 + y^2 = 25$, we have

$$x_A^2 + y_A^2 = 25$$

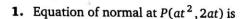
$$\Rightarrow$$
 $x_A^2 + 4(x_A + 3)^2 = 25$

$$\Rightarrow$$
 $x_A^2 + 4(x_A^2 + 9 + 6x_A) = 25$

$$\Rightarrow$$
 $5x_A^2 + 24x_A + 36 - 25 = 0$

$$\Rightarrow 5x_A^2 + 24x_A + 11 = 0$$

Exercise-2: One or More than One Answer is/are Correct

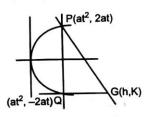


$$y = -tx + 2at + at^3$$

$$G(4a + at^2, -2at)$$

 \Rightarrow Locus of point G(h, K) is

$$y^2 = 4a(x - 4a)$$



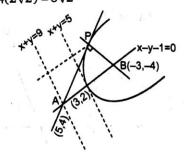
Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

Sol. Tangent and normal are angle bisectors of focal radius and perpendicular to directrix. Circle 'C' circumscribing $\triangle ABP$ is

$$(x-5)(x+3)+(y-4)(y+4)=0$$

Length of latus rectum = $4(2\sqrt{2}) = 8\sqrt{2}$



Parabola

Exercise-5: Subjective Type Problems

 $\beta = 2\alpha^2 + 4\alpha - 2$...(1) 1.

$$-\beta = 2\alpha^2 - 4\alpha - 2 \qquad \dots (2)$$

(1) & (2) \Rightarrow $4\alpha^2 - 4 = 0 \Rightarrow \alpha = \pm 1$

Put
$$\alpha = 1$$
, $\beta = 2 + 4 - 2 = 4$

$$A(1, 4), B(-1, -4)$$

$$AB^2 = l^2 = (\sqrt{4+64})^2 = 68$$

2.
$$R = \left(\frac{a+b}{2}, -\left(\frac{a+b}{2}\right)^2\right), M = \left(\frac{a+b}{2}, -\frac{a^2-b^2}{2}\right)$$

$$PQ = y + b^2 = \frac{-b^2 + a^2}{b - a}(x - b)$$

$$y + b^2 = -(b+a)(x-b)$$

$$y = -(b+a)(x-b) - b^2$$

$$y + b^{2} = -(b + a)(x - b)$$

$$y = -(b + a)(x - b) - b^{2}$$

$$\Delta_{1} = \int_{a}^{b} [[-(a + b)(x - b) - b^{2}] + x^{2}] dx$$

$$= -(a+b)\frac{(x-b)^2}{2} - b^2x + \frac{x^3}{3}\bigg|_a^b = \frac{(a-b)^3}{6}$$

Area of
$$\triangle PQR = \Delta_2 = \frac{1}{2} \begin{vmatrix} a & -a^2 & 1 \\ b & -b^2 & 1 \\ \frac{a+b}{2} & -\left(\frac{a+b}{2}\right)^2 & 1 \end{vmatrix}$$

$$R_1 \to R_1 - R_2, R_2 \to R_2 - R_3$$
, we get $\Delta_2 = \frac{(a-b)^3}{8}$

3.
$$m_{AB} \times m_{BC} = -1$$

$$\Rightarrow \frac{m_{AB} \times m_{BC} = -1}{\frac{-2}{(t_1 + t_2)} \times \frac{-2}{(t_2 + t_3)} = -1}$$

$$\Rightarrow (t_1 + t_2)(t_2 + t_3) = -4$$

Similarly,

$$m_{AD} \times m_{CD} = -1$$

$$\Rightarrow$$
 $(t_1 + t_4)(t_3 + t_4) = -4$

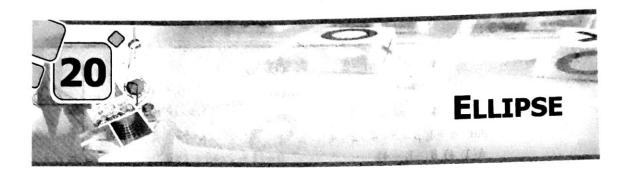
$$m_{AD} \times m_{CD} = -1$$

$$\Rightarrow (t_1 + t_4)(t_3 + t_4) = -4$$

$$\Rightarrow (t_1 + t_2)(t_2 + t_3) = (t_1 + t_4)(t_3 + t_4)$$

Solving this

$$\frac{t_2 + t_4}{t_1 + t_3} = -1$$



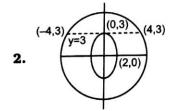
Exercise-1: Single Choice Problems

1. Length of perpendicular from C(0,0) to the tangent at $P(2\sqrt{3}\cos\theta, 2\sqrt{2}\cos\theta)$ is

$$CF = \frac{-1}{\sqrt{\frac{\cos^2 \theta}{12} + \frac{\sin^2 \theta}{8}}}$$

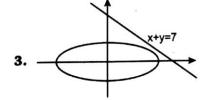
Equation of normal at P is $\frac{2\sqrt{3}x}{\cos\theta} - \frac{2\sqrt{2}y}{\sin\theta} = 12 - 8$ which meets the major axis at $G\left(\frac{2}{\sqrt{3}}\cos\theta, 0\right)$

$$CF \times PG = 8$$



The minimum length of intercept will be possible when

$$y=3$$
 or $y=-3 \Rightarrow AB=8$



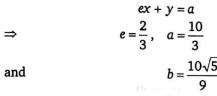
Ellipse 291

$$\frac{dy}{dx} = -\frac{x}{2y} = -1$$

Put x = 2y in the equation of ellipse

The point lies in I quad \Rightarrow (2, 1)

4. Equation of tangent at P is



Length of latus rectum = $\frac{2b^2}{a} = \frac{100}{27}$

5. Area bounded by circle & ellipse = $\pi a^2 - \pi ab = \pi a(a - b)$

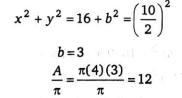
6.
$$\frac{S_1F_1 + S_2F_2}{2} \ge \sqrt{(S_1F_1)(S_2F_2)} = \sqrt{16}$$

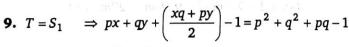
: Product of perpendiculars from two foci of an ellipse upon any tangent is equal to the square of semi-minor axis.

7.
$$f(k^2 + 2k + 5) > f(k + 11)$$

 $\Rightarrow k^2 + 2k + 5 < k + 11 \Rightarrow k \in (-3, 2)$

8. Since sides of the square are tangent and perpendicular to each other, so the vertices lie on director circle

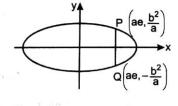




$$\Rightarrow p^2 + q^2 = -pq \Rightarrow p = 0, q = 0$$

10. The combined equation of pair of tangents drawn from a point (x_1, y_1) to the ellipse $S = \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0$ is $T^2 = SS_1$. Therefore,

$$\left(\frac{xx_1}{a^2} + \frac{yy_1}{b^2} - 1\right)^2 = \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1\right) \left(\frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} - 1\right)$$



$$\left(\frac{4x}{9} + 2y - 1\right)^2 = \left(\frac{x^2}{9} + y^2 - 1\right)\left(\frac{4^2}{9} + 2^2 - 1\right)$$

$$\Rightarrow 3x^2 + 7y^2 - 16xy + 8x + 36y - 52 = 0$$

$$\Rightarrow \tan \alpha = \frac{2\sqrt{h^2 - ab}}{a + b}$$

where, a = 3, b = 7 and h = -8. Therefore,

$$\tan \alpha = \frac{2\sqrt{64 - 21}}{10} = \frac{\sqrt{43}}{5}$$

Note: α is acute angle between the pair of tangents. Therefore,

$$(a+b-c)^2 = a^2 + b^2 + c^2 + 2ab - 2ac - 2bc$$

Alternate solution: Any line passing through the point (4, 2) is given by

$$y-2=m(x-4)$$
$$y=mx-4m+2$$

For this line to be tangent to the given ellipse, put this y into the equation of the ellipse and make

$$D = 0$$

That is,

$$\frac{x^2}{9} + (mx - 4m + 2)^2 = 1$$

$$(1+9m^2)x^2 + x(36m-72m^2) + 16(9)m^2 - 16(9)m + 27 = 0$$

Now,

$$D=0 \Rightarrow B^2-4AC=0$$

$$\Rightarrow (36m - 72m^2)^2 - 4(1 + 9m^2)(16 \cdot 9m^2 - 16 \cdot 9m + 27) = 0$$

$$\Rightarrow (36m)^2 (1-2m)^2 - 36(1+9m^2)(16m^2 - 16m + 3) = 0$$

$$\Rightarrow m^2(1+4m^2-4m)-36(16m^2-16m+3+9\cdot16m^4-9\cdot16m+27m^2)=0$$

$$\Rightarrow 7m^2 - 16m + 3 = 0$$

Now,

$$\tan \alpha = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{\sqrt{(m_1 + m_2)^2 - 4m_1 m_2}}{1 + m_1 m_2} \right|$$

$$\Rightarrow \tan \alpha = \frac{\sqrt{\left(\frac{16}{7}\right)^2 - 4 \cdot \frac{3}{2}}}{1 + \frac{3}{7}} = \frac{7}{10} \left(\frac{\sqrt{16^2 - 4 \cdot 3 \cdot 7}}{7}\right)$$

Ellipse reitalo?

$$= \left(\frac{1}{10}\right)\sqrt{4(43)} = \frac{\sqrt{43}}{5}$$

where α is the acute angle between the tangents.

Exercise-2: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

1. SS' = 2ae

$$(x_1 - x_2)^2 + (y_1 - y_2)^2 = 4(2)^2 \left(\frac{\sqrt{3}}{2}\right)^2$$

$$(x_1 + x_2)^2 + (y_1 + y_2)^2 - 4(x_1x_2 + y_1y_2) = 12$$

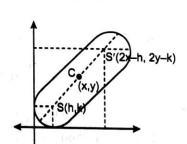
$$(2h)^2 + (2k)^2 - 4(1+1) = 12$$

(: x_1x_2 and y_1y_2 are \perp distance of the foci from their tangents $=b^2=1^2$)

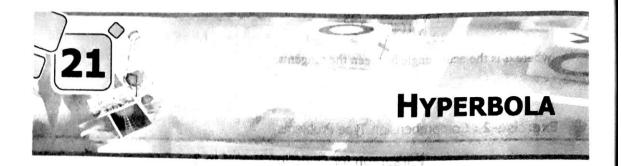
$$\Rightarrow \qquad \qquad h^2 + k^2 = 5$$

2.
$$(2x-h)(h) = 1$$
 $\Rightarrow x = \frac{1+h^2}{2h}$

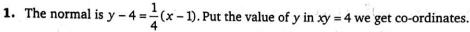
$$(2y-k)(k)=1 \Rightarrow y=\frac{1+k^2}{2k}$$



Chapter 21 - Hyperbola



Exercise-1 : Single Choice Problems



3.
$$c^2 = a^2 m^2 - b^2 \Rightarrow c^2 = \lambda^2 m^2 - (\lambda^3 + \lambda^2 + \lambda)^2$$

 $c^2 \ge 0 \Rightarrow m^2 \ge (\lambda^2 + \lambda + 1)^2$
 $\lambda^2 + \lambda + 1$ has minimum value $\frac{3}{4} \Rightarrow m^2 \ge \frac{9}{16}$

4. The asymptotes are $y = \pm \frac{\sqrt{3}}{2}x$ and the double ordinate be

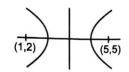
$$P\left(h, \frac{\sqrt{3}}{2}\sqrt{h^2-4}\right)$$
 and $P'\left(h, -\frac{\sqrt{3}}{2}\sqrt{h^2-4}\right)$

$$\Rightarrow$$
 $(PQ)(PQ')=3$

5.
$$2ae = 5$$
 and $2a = 3$

$$\Rightarrow \qquad e = \frac{5}{3}$$

$$\Rightarrow \frac{1}{e^2} + \frac{1}{(e')^2} = 1 \Rightarrow e' = \frac{5}{4}$$



6. The equation of normal at $(2 \sec \theta, \tan \theta)$ is $2x \cos \theta + y \cot \theta = 5$

$$\Rightarrow$$
 $\sin \theta = \frac{1}{2}$

$$a^2 + b^2 = \frac{25}{3}$$

$$\Rightarrow a^2 + b^2 = \frac{25}{3} \quad : \quad c^2 = a^2 m^2 + b^2$$

7. Let locus of point be (h, k).

Equation of chord of contact is hx + ky = 4

For tangent, $x\left(\frac{4-hx}{k}\right) = 1$ has two equal roots.

Hyperbola

295

$$\Rightarrow$$
 $hk = 4 \Rightarrow xy = 4$

8.
$$\frac{x^2}{16} - \frac{y^2}{18} - \left(\frac{x \cos \alpha + y \sin \alpha}{p}\right)^2 = 0$$

$$\Rightarrow$$
 Coeff. of x^2 + coeff. of $y^2 = 0 \Rightarrow P = \pm 12$

The chord $x \cos \alpha + y \sin \alpha \pm 12 = 0$ is tangent to the circle $x^2 + y^2 = \left(\frac{d}{2}\right)^2 \Rightarrow \frac{d}{4} = 6$

9. Let the rectangular hyperbola be $x^2 - y^2 = a^2$ and the point be $(a \sec \theta, a \tan \theta)$.

$$a_1 a_2 + b_1 b_2 = (a \cos \theta) \left(\frac{2a}{\cos \theta}\right) + \left(-\frac{a \cos \theta}{\sin \theta}\right) \left(\frac{2a \sin \theta}{\cos \theta}\right)$$

Exercise-2: One or More than One Answer is/are Correct

3. Let $\left(t, \frac{1}{t}\right)$ be any point on xy = 1

$$\Rightarrow$$
 $xy' + y =$

$$\Rightarrow$$
 $y' = \frac{-y}{x}$

$$\Rightarrow \qquad y' = -\frac{1}{t^2}$$

$$\Rightarrow \frac{-b}{a} = t^2$$

 \Rightarrow a and b are of opp. sign.

Chapter 22 - Compound Angles

COMPOUND ANGLES

Exercise-1: Single Choice Problems

$$a\sin x + b(2\cos c\cos x) = \alpha$$

$$\cos c = \frac{\alpha - a \sin x}{2b \cos x}$$

$$= \frac{1}{2b \cos x} (a \sec x - a \tan x) \text{ differentiate } x$$

$$= \frac{1}{2b} (\alpha \sec x - a \tan x) \text{ differentiate w.r.t. } x$$

$$\alpha \sec x \tan x - a \sec^2 x = 0$$

$$\Rightarrow$$
 $\sin x = \frac{1}{2}$

3.
$$\tan x \cdot \frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} < -1$$

$$t\left(\frac{3t-t^3}{1-3t^2}\right)+1<0 \qquad (Let tan x = t)$$

$$\frac{1-t^4}{1-3t^2} < 0 \implies \frac{(t-1)(t+1)}{(3t^2-1)} < 0$$

$$t \in \left(\frac{1}{\sqrt{3}}, 1\right)$$

4.
$$\sum_{r=1}^{8} \tan(rA) \tan\{(r+1)A\} = \sum_{r=1}^{8} \left[\frac{\tan(r+1)A - \tan(rA) - \tan A}{\tan A} \right] = \frac{\tan 9A - 9 \tan A}{\tan A} = -10$$

5.
$$f(x) = 2 \csc 2x + \sec x + \csc x$$

$$1 + \sin x + \cos x$$

$$= \frac{1 + \sin x + \cos x}{\sin x \cos x}$$

$$f'(x) = \frac{\sin^3 x + \sin^2 x - \cos^3 x - \cos^2 x}{\sin^2 x \cos^2 x} = 0 \implies x = \frac{\pi}{4}$$

Compound Angles

$$f(x)_{\min} = \frac{2}{\sqrt{2}-1}$$
 at $x = \frac{\pi}{4}$

5. $\csc \theta + \csc (60^{\circ} - \theta) - \csc (60^{\circ} + \theta)$ where $\theta = 10^{\circ}$

10.
$$\frac{1}{2}(2\sin x \cos x + 2\cos^2 x) = \frac{1}{2}(\sin 2x + \cos 2x + 1)$$

11.
$$\frac{\tan A}{\sqrt{3}} = \frac{\tan B}{\sqrt{5}} = k$$
 $(k > 0)$, if $2 \sin A = \sqrt{3} \sin B$

$$\Rightarrow \frac{2 \tan A}{\sqrt{1 + \tan^2 A}} = \frac{\sqrt{3} \tan B}{\sqrt{1 + \tan^2 B}} \Rightarrow \frac{2\sqrt{3}k}{\sqrt{1 + 3k^2}} = \frac{\sqrt{3} \times \sqrt{5}k}{\sqrt{1 + 5k^2}} \Rightarrow k = \frac{1}{\sqrt{5}}$$

12. Gives equations can be written as

$$2\cos\alpha + 9\cos\delta = -6\cos\beta - 7\cos\gamma \qquad ...(1)$$

$$2\sin\alpha - 9\sin\delta = 6\sin\beta - 7\sin\gamma \qquad ...(2)$$

Square and add equation (1) and (2),

$$\Rightarrow 4 + 36 + 36 [\cos \alpha \cos \delta - \sin \delta \sin \alpha] = 36 + 49 + 84 [\cos \beta \cos \gamma - \sin \beta \sin \gamma]$$

$$\Rightarrow 36 \left[\cos(\alpha + \delta)\right] = 84 \left[\cos(\beta + \gamma)\right]$$

$$\cos(\alpha + \delta) \quad 84 \quad 7 \quad m$$

$$\frac{\cos{(\alpha+\delta)}}{\cos{(\beta+\gamma)}} = \frac{84}{36} = \frac{7}{3} = \frac{m}{n}; \qquad m+n=10$$

13.
$$\left| \frac{1 + \sin \theta + 1 - \sin \theta}{\sqrt{1 - \sin^2 \theta}} \right| = \left| \frac{2}{\cos \theta} \right| = -2 \sec \theta$$

14.
$$A = \sum_{r=1}^{3} \cos \frac{2r\pi}{7} = \cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} = \cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{8\pi}{7} = B$$

$$\tan \beta = \frac{x}{z} = \frac{1}{3}$$

$$\tan \alpha = \frac{y}{z} = \frac{1}{2}$$

$$\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta} = 1 \quad \Rightarrow \quad \alpha + \beta = \frac{\pi}{4}$$

17.
$$f(x) = -2\sin^2 x + \sin x + 2 \ \forall \ x \in \left[\frac{\pi}{6}, \frac{2\pi}{3}\right]$$

Let $\sin x = t$

$$f(t) = -2t^2 + t + 2 \quad \forall t \in \left[\frac{1}{2}, 1\right]^{-1}$$

19.
$$(2\sin x - \csc x)^2 + (\tan x - \cot x)^2 = 0$$

$$\therefore \sin^2 x = \frac{1}{2} \cap \tan^2 x = 1$$

20.
$$\cos^2 A = \sin A \cdot \tan A \implies \cos^3 A = \sin^2 A$$

21.
$$f(x) = \left(\frac{\sqrt{3}+1}{2}\right)\sin x + \left(\frac{\sqrt{3}+1}{2}\right)\cos x = \left(\frac{\sqrt{3}+1}{2}\right)(\sin x + \cos x)$$

22.
$$A = B + C$$

$$\Rightarrow$$
 $\tan A \tan B \tan C = \tan A - \tan B - \tan C$

23.
$$E = \sin A + \sin 2B + \sin 3C$$

$$E = \frac{3}{5} + 2 \cdot \frac{4}{5} \cdot \frac{3}{5} - 1$$
$$= \frac{15}{25} + \frac{24}{25} - 1 = \frac{39 - 25}{25} = \frac{14}{25}$$

24.
$$\frac{\cos A \cos C + \cos A \cos C}{\cos A \sin C + \cos A \sin C} = \cot C \qquad (\because A + B + C = \pi)$$

25.
$$\frac{\sin\alpha - \sin\gamma}{\cos\gamma - \cos\alpha} = \frac{2\cos\left(\frac{\alpha + \gamma}{2}\right)\sin\left(\frac{\alpha - \gamma}{2}\right)}{2\sin\left(\frac{\alpha + \gamma}{2}\right)\sin\left(\frac{\alpha - \gamma}{2}\right)} = \cot\left(\frac{\alpha + \gamma}{2}\right) = \cot\beta$$

26.
$$\cos \frac{x}{256} \cdot \cos \frac{x}{128} \cos \frac{x}{64} \cdot \dots \cdot \cos \frac{x}{4} \cdot \cos \frac{x}{2} = \frac{\sin x}{256 \sin \left(\frac{x}{256}\right)}$$

27.
$$\frac{(\sin 7\alpha + \sin 5\alpha) + 5(\sin 5\alpha + \sin 3\alpha) + 12(\sin 3\alpha + \sin \alpha)}{(\sin 7\alpha + \sin 7\alpha) + (\sin 7\alpha + \sin 7\alpha)}$$

$$\sin 6\alpha + 5\sin 4\alpha + 12\sin 2\alpha$$

$$=\frac{2\sin 6\alpha \cos \alpha + 5(2\sin 4\alpha \cos \alpha) + 12(2\sin 2\alpha \cos \alpha)}{\sin 6\alpha + 5\sin 4\alpha + 12\sin 2\alpha} = 2\cos \alpha$$

28.
$$\tan^2 A + \tan^2 B + \tan^2 C = \tan A \tan B + \tan B \tan C + \tan A \tan C$$

$$\Rightarrow$$
 $\tan A = \tan B = \tan C$

$$\Rightarrow A = B = C = \frac{\pi}{3}$$

29.
$$\log_{|\sin x|} |\cos x| + \log_{|\cos x|} |\sin x| = 2$$
 $\Rightarrow \log_{|\sin x|} |\cos x| = 1 \Rightarrow |\cos x| = |\sin x|$

30.
$$f(x) = \sin^6 x + \cos^6 x = 1 - 3\sin^2 x \cos^2 x = 1 - \frac{3}{4}\sin^2 2x$$

29

31.
$$y = \frac{2\sin\alpha}{1 + \cos\alpha + \sin\alpha} \times \left[\frac{(1 + \sin\alpha) - \cos\alpha}{(1 + \sin\alpha) - \cos\alpha} \right] = \frac{2\sin\alpha[(1 + \sin\alpha) - \cos\alpha]}{(1 + \sin\alpha)^2 - \cos^2\alpha}$$
$$= \frac{1 + \sin\alpha - \cos\alpha}{1 + \sin\alpha}$$

32.
$$\frac{\tan^3 A}{1 + \tan^2 A} + \frac{\cot^3 A}{1 + \cot^2 A} = \frac{\sin^3 A}{\cos A} + \frac{\cos^3 A}{\sin A}$$
$$= \frac{\sin^4 A + \cos^4 A}{\sin A \cos A} = \frac{1 - 2\sin^2 A \cos^2 A}{\sin A \cos A}$$
$$= \sec A \csc A - 2\sin A \cos A$$

33.
$$\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} + \sqrt{\frac{1+\sin\theta}{1-\sin\theta}} = \frac{2}{\sqrt{1-\sin^2\theta}} = \frac{2}{|\cos\theta|}$$

34.
$$y = (\sin^2 \theta + \csc^2 \theta + 2) + (\cos^2 \theta + \sec^2 \theta + 2) = 7 + (\tan^2 \theta + \cot^2 \theta) \ge 9$$

35.
$$\log_3 \sin x - \log_3 \cos x - \log_3 (1 - \tan x) - \log_3 (1 + \tan x) = -1$$

 $\log_3 \left(\frac{\tan x}{1 - \tan^2 x} \right) = -1 \implies \frac{\tan x}{1 - \tan^2 x} = \frac{1}{3} \implies \tan 2x = \frac{2}{3}$

36.
$$\sin \theta + \csc \theta = 2 \implies \sin \theta = \csc \theta = 1; \left(x + \frac{1}{x} \ge 2 \right)$$

37.
$$(\tan \theta + \cot \theta) (\tan^2 \theta + \cot^2 \theta - 1) = 52$$

 $(\tan \theta + \cot \theta) \{ (\tan \theta + \cot \theta)^2 - 3 \} = 52$
Let $\tan \theta + \cot \theta = t$

$$t^3 - 3t - 52 = 0 \implies t = 4$$

 $\tan^2 \theta + \cot^2 \theta = (\tan \theta + \cot \theta)^2 - 2 = 14$

38.
$$-5 \le 3 \sin x - 4 \cos x \le 5$$
$$10 \le 3 \sin x - 4 \cos x + 15 \le 20$$

$$\log_{20} 10 \le \log_{20} (3\sin x - 4\cos x + 15) \le \log_{20} 20$$

39.
$$x^2 + y^2 = 9$$

Let
$$x = 3\cos\theta$$
, $y = 3\sin\theta$

$$4a^2 + 9b^2 = 16$$

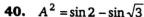
Let
$$a = 2\cos\phi$$
, $b = \frac{4}{3}\sin\phi$

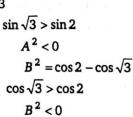
$$4a^2x^2 + 9b^2y^2 - 12abxy = (2ax - 3by)^2$$

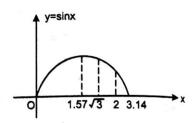
$$= (12\cos\theta\cos\phi - 12\sin\theta\sin\phi)^2 = 144\cos^2(\theta + \phi)$$

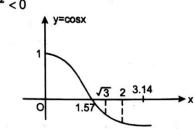
300

Solution of Advanced Problems in Mathematics for JEE









Both A and B are not real numbers.

41.
$$(2^x + 2^{-x} - 2\cos x)(3^{x+\pi} + 3^{-x-\pi} + 2\cos x)(5^{\pi-x} + 5^{x-\pi} - 2\cos x) = 0$$

If
$$\frac{2^x + 2^{-x}}{2} = \cos x$$
 $\Rightarrow x = 0$

If
$$\frac{3^{x+\pi}+3^{-x-\pi}}{2} = -\cos x$$
 \Rightarrow $x = -\pi$

If
$$\frac{5^{\pi-x} + 5^{x-\pi}}{2} = \cos x$$
 (Not possible)

There are two real values of x.

42.

 \Rightarrow

If

 \Rightarrow

$$e^{\sin x} - e^{-\sin x} - 4 = 0$$

$$e^{2\sin x} - 4e^{\sin x} - 1 = 0$$

$$e^{\sin x} = 2 \pm \sqrt{5}$$

$$e^{\sin x} = 2 + \sqrt{5}$$

$$\sin x = \ln(2 + \sqrt{5})$$

$$e^{\sin x} = 2 - \sqrt{5}$$

 $[\ln(2+\sqrt{5}) > 1, \text{ Not possible}]$ (2 - $\sqrt{5}$ < 0) Not possible

If
There is no solution.

43.
$$\sqrt{4\sin^4 \alpha + 4\sin^2 \alpha \cdot \cos^2 \alpha + 4\cos^2(\pi/4 - \alpha/2)}$$

 $= \sqrt{4\sin^2 \alpha + 2[1 + \cos(\pi/2 - \alpha)]}$
 $= 2|\sin \alpha| + 2 + 2\sin \alpha$
 $= -2\sin \alpha + 2 + 2\sin \alpha = 2$ (If $\pi < \alpha < \frac{3\pi}{2}$ then $\sin \alpha < 0$)

mpound Angle.

44.
$$\left(\cos\frac{\pi}{12} - \sin\frac{\pi}{12}\right) \left(\frac{\sin\frac{\pi}{12}}{\cos\frac{\pi}{12}} + \frac{\cos\frac{\pi}{12}}{\sin\frac{\pi}{12}}\right)$$

$$= \frac{\cos\frac{\pi}{12} - \sin\frac{\pi}{12}}{\sin\frac{\pi}{12} \cdot \cos\frac{\pi}{12}} = \frac{2\sqrt{1 - \sin\pi/6}}{\sin\pi/6} = 2\sqrt{2}$$

45.
$$\tan(100^\circ + 125^\circ) = \frac{\tan 100^\circ + \tan 125^\circ}{1 - \tan 100^\circ \tan 125^\circ} = 1$$

 \Rightarrow tan 100°+ tan 125°+ tan 100° tan 125° = 1

46. If
$$\sin x + \sin^2 x = 1 \Rightarrow \sin x = 1 - \sin^2 x \Rightarrow \sin x = \cos^2 x$$

$$\cos^8 x + 2\cos^6 x + \cos^4 x = \sin^4 x + 2\sin^3 x + \sin^2 x$$

$$= \sin^2 x (\sin^2 x + 2\sin x + 1)$$

$$= (1 - \sin x) (2 + \sin x)$$

$$= 2 - \sin x - \sin^2 x = 1$$

47. Let $x = 5\cos\theta$, $y = 5\sin\theta$

$$0 < 3x + 4y \le 25$$
 (: $3x + 4y > 0$)

48.
$$5\cos 2\theta + 2\cos^2\left(\frac{\theta}{2}\right) + 1 = 0$$

$$10\cos^2\theta + \cos\theta - 3 = 0$$
 \Rightarrow $\cos\theta = \frac{1}{2}, -\frac{3}{5}$

49. $\sin \beta = \frac{4}{5}$ where $0 < \beta < \pi$ and $\tan \beta > 0$

then cos

$$5 \left[\frac{3}{5} \sin(\alpha + \beta) - \frac{4}{5} \cos(\alpha + \beta) \right] \csc \alpha = 5$$

50.
$$\sin\left(x + \frac{\pi}{6}\right) + \cos\left(x + \frac{\pi}{6}\right) = \sqrt{2}\left[\cos\frac{\pi}{4}\sin\left(x - \frac{\pi}{6}\right) + \sin\frac{\pi}{4}\cdot\cos\left(x + \frac{\pi}{6}\right)\right] = \sqrt{2}\sin\left(x + \frac{5\pi}{12}\right)$$

This attained maximum value when $x + \frac{5\pi}{12} = \frac{\pi}{2} \implies x = \frac{\pi}{12}$

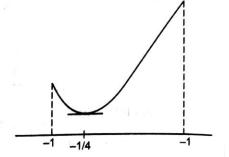
51.
$$\sin 2x - \cos 2x = 2a - 1$$
$$-\sqrt{2} \le 2a - 1 \le \sqrt{2}$$
$$\frac{1 - \sqrt{2}}{2} \le a \le \frac{1 + \sqrt{2}}{2}$$

52. (cos 12°·cos 24°·cos 48°·cos 84°) (cos 36° cos 72°) · cos 60° (-cos 12°·cos 24°·cos 48°·cos 96°) (cos 36° cos 72°) · cos 60°

$$\left[-\frac{\sin(2^4 \times 12^\circ)}{2^4 \sin 12^\circ} \right] \times \left(\frac{\sqrt{5} + 1}{4} \times \frac{\sqrt{5} - 1}{4} \right) \times \frac{1}{2} = \frac{1}{128}$$

53.
$$2\cos^2\theta + \cos\theta + 1$$

 $y_{min} = \frac{7}{8} \text{ at } \cos\theta = -\frac{1}{4}$
 $y_{max} = 4 \text{ at } \cos\theta = 1$

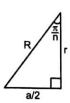


54.
$$\tan x \left(\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} \right) + 1 < 0; \frac{\tan^4 x - 1}{3 \tan^2 x - 1} < 0$$

$$\Rightarrow \frac{(\tan^2 x + 1)(\tan x + 1)(\tan x - 1)}{(\sqrt{3} \tan x + 1)(\sqrt{3} \tan x - 1)} < 0$$

$$\Rightarrow \frac{\pi}{6} < x < \frac{\pi}{4}$$

$$55. \quad a = 2R \sin \frac{\pi}{n} = 2r \tan \frac{\pi}{n}$$



56.
$$(\cos 12^{\circ} + \cos 132^{\circ}) + (\cos 84^{\circ} + \cos 156^{\circ})$$

$$= 2\cos \frac{12^{\circ} + 132^{\circ}}{2}\cos \frac{12^{\circ} - 132^{\circ}}{2} + 2\cos \frac{84^{\circ} + 156^{\circ}}{2}\cos \frac{84^{\circ} - 156^{\circ}}{2}$$

$$= 2\cos 72^{\circ}\cos 60^{\circ} + 2\cos 120^{\circ}\cos 36^{\circ}$$

$$= 2 \times \frac{\sqrt{5} - 1}{4} \times \frac{1}{2} + 2 \times \left(-\frac{1}{2}\right) \times \frac{\sqrt{5} + 1}{4} = -\frac{1}{2}$$

57.
$$\frac{1}{2} \left[\frac{2\sin\theta\cos\theta}{\cos\theta\cos3\theta} + \frac{2\sin3\theta\cos3\theta}{\cos9\theta\cos3\theta} + \frac{2\sin9\theta\cos9\theta}{\cos9\theta\cos27\theta} + \frac{2\sin27\theta\cos27\theta}{\cos27\theta\cos81\theta} \right] \\
= \frac{1}{2} \left[\frac{\sin(3\theta - \theta)}{\cos\theta\cos3\theta} + \frac{\sin(9\theta - 3\theta)}{\cos3\theta\cos9\theta} + \frac{\sin(27\theta - 9\theta)}{\cos9\theta\cos27\theta} + \frac{\sin(81\theta - 27\theta)}{\cos27\theta\cos81\theta} \right] \\
= \frac{1}{2} \left[\tan81\theta - \tan\theta \right] = \frac{1}{2} \left[\frac{\sin80\theta}{\cos\theta\cos81\theta} \right]$$

58. $\sin 20^{\circ} \left(\frac{4\cos 20^{\circ} + 1}{\cos 20^{\circ}} \right) = \frac{2\sin 40^{\circ} + \sin 20^{\circ}}{\cos 20^{\circ}} = \frac{2\sin (60^{\circ} - 20^{\circ}) + \sin 20^{\circ}}{\cos 20^{\circ}} = \sqrt{3}$

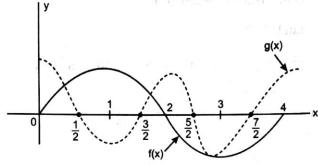
59. Let us draw the graph of

$$f(x) = \sin\left(\frac{x\pi}{2}\right)$$

and

$$g(x) = \cos(x\pi)$$

On the same xy-plane as shown in the following figure.



From this graphical representation, it is clear that y is strictly increasing in $\left(\frac{5}{2}, \frac{7}{2}\right)$

Because for all values of x,

$$\frac{5}{2} < x < \frac{7}{2}$$

That is,

$$\sin\left(\frac{x\pi}{2}\right) < 0$$

and

$$\cos(x\pi) < 0$$

which imply that

$$\frac{dy}{dx} > 0$$

which means that y is strictly increasing.

60. $8 \sin \theta \sin 3\theta \left(\frac{\sin 8\theta}{4 \sin 2\theta} \right) = \cos 6\theta$

$$\sin 3\theta \sin 8\theta = \cos 6\theta \cos \theta$$

$$\cos 5\theta - \cos 11\theta = \cos 7\theta + \cos 5\theta$$

$$\cos 7\theta + \cos 11\theta = 0$$

$$2\cos 9\theta \cdot \cos 2\theta = 0$$

61.
$$\tan A = -\frac{1}{3} \Rightarrow \sin A = \frac{1}{\sqrt{10}}$$
; $\cos A = -\frac{3}{\sqrt{10}}$

63.
$$(2\cos\theta)^2 = (1-\sin\theta)^2 \implies \sin\theta = 1 \text{ or } \sin\theta = \frac{-3}{5}$$

303

64.
$$\sin \theta + \frac{1}{\sin \theta} = 2 \implies \sin \theta = 1$$

65.
$$\tan^2 \theta + \cot^2 \theta = a \Rightarrow \tan^3 \theta + \cot^3 \theta = \sqrt{a+2} (a-1) = 52$$

66.
$$\tan A = -\tan C = \frac{5}{12}$$

 $\cos B = -\cos D = -\frac{3}{5} \implies \tan D = \frac{4}{3}$

67.
$$\sqrt{\tan^2\theta - \sin^2\theta} = \sqrt{\tan^2\theta \sin^2\theta} = |\tan\theta \sin\theta|$$

68.
$$\frac{\sin 10^\circ + \sin 20^\circ}{\cos 10^\circ + \cos 20^\circ} = \tan 15^\circ = 2 - \sqrt{3}$$

69.
$$(\sin^2 \theta)^3 + (\cos^2 \theta)^3 = (\sin^2 \theta + \cos^2 \theta)(\sin^4 \theta + \cos^4 \theta - \sin^2 \theta \cos^2 \theta)$$

= $1 - 3\sin^2 \theta \cos^2 \theta$

70.
$$\frac{\tan x + 1}{\tan x - 1} - \frac{\sec^2 x + 2}{\tan^2 x - 1} \Rightarrow \frac{(\tan x + 1)^2 - (\sec^2 x + 2)}{\tan^2 x - 1}$$
$$\Rightarrow \frac{2 \tan x - 2}{\tan^2 x - 1} \Rightarrow \frac{2}{\tan x + 1}$$

71.
$$\frac{\cot \alpha - \tan \alpha}{\cot \alpha + \tan \alpha} - [\cos 450^{\circ} + \cos(2\alpha - 180^{\circ})]$$
$$\Rightarrow (\cos^{2} \alpha - \sin^{2} \alpha) + \cos 2\alpha = 2\cos 2\alpha$$

72.
$$\left(\frac{1 + \tan \alpha}{1 - \tan \alpha} \right) \cdot \left(\frac{1 + \tan \alpha}{1 - \tan \alpha} \right) + 1$$

$$1 + \tan^2 \left(\frac{\pi}{4} + \alpha \right) = \sec^2 \left(\frac{\pi}{4} + \alpha \right) = \csc^2 \left(\frac{\pi}{4} - \alpha \right)$$

73.
$$\frac{\tan\alpha + \sin\alpha}{1 + \cos\alpha} = \tan\alpha$$

74.
$$(\cos 2\alpha + \cos 5\alpha) - (\cos 3\alpha + \cos 4\alpha)$$

 $2\cos \frac{7\alpha}{2} \cdot \cos \frac{3\alpha}{2} - 2\cos \frac{7\alpha}{2} \cdot \cos \frac{\alpha}{2}$

$$2\cos\frac{7\alpha}{2}\left[\cos\frac{3\alpha}{2}-\cos\frac{\alpha}{2}\right] = -4\sin\frac{\alpha}{2}\sin\alpha\cos\frac{7\alpha}{2}$$

75.
$$\cos 2\gamma = \frac{1-\tan^2 \gamma}{1+\tan^2 \gamma} = \frac{1-\left(\frac{1+\sin\alpha\sin\beta}{\cos\alpha\cos\beta}\right)^2}{1+\left(\frac{1+\sin\alpha\sin\beta}{\cos\alpha\cos\beta}\right)^2}$$

$$\Rightarrow \frac{(\cos\alpha\cos\beta)^2 - (1+\sin\alpha\cos\beta)^2}{(\cos\alpha\cos\beta)^2 + (1+\sin\alpha\sin\beta)^2} = \frac{[1+\cos(\alpha-\beta)][\cos(\alpha+\beta)-1]}{(\cos\alpha\cos\beta)^2 + (1+\sin\alpha\sin\beta)^2} \le 0$$

Compound Angles

305

76.
$$x = \frac{2\pi}{3}$$
 (IInd quadrant)

$$\cos x + \cos 2x + \cos 3x + \dots + \cos 100x = \frac{\sin 50x}{\sin \frac{x}{2}} \cdot \cos \left(\frac{101x}{2}\right) = -\frac{1}{2}$$

77.
$$\cos^3 0^\circ + \cos^3 \frac{\pi}{3} + \cos^3 \frac{2\pi}{3} + \cos^3 \pi + ... + \cos^3 \frac{10\pi}{3} = -\frac{1}{8}$$

78.
$$\frac{1-2(\cos 60^{\circ}-\cos 80^{\circ})}{2\sin 10^{\circ}}=\frac{2\cos 80^{\circ}}{2\sin 10^{\circ}}=1$$

79.
$$(x+5)^2 + (y-12)^2 = 14^2$$

Let
$$x = -5 + 14\cos\theta$$
, $y = 12 + 14\sin\theta$
 $\Rightarrow x^2 + y^2 = 365 + 336\sin\theta - 140\cos\theta$

80.
$$\tan \theta = \lambda$$
 has three distinct solution in $[0, 2\pi] \Rightarrow \lambda = 0$ and $\theta = 0, \pi, 2\pi$.

81.
$$\sqrt{\frac{1 + \tan \alpha}{1 - \tan \alpha}} + \sqrt{\frac{1 - \tan \alpha}{1 + \tan \alpha}} = \frac{2}{\sqrt{1 - \tan^2 \alpha}}$$

82.
$$3\sin\theta + 4\cos\theta = 5\left(\frac{3}{5}\sin\theta + \frac{4}{5}\cos\theta\right) = 5\sin(\theta + 53^{\circ})$$

83.
$$f(n) = \prod_{r=1}^{n} \cos r$$

$$f(4) = \cos 1 \cdot \cos 2 \cdot \cos 3 \cdot \cos 4 < 0$$

$$f(5) = \cos 1 \cdot \cos 2 \cdot \cos 3 \cdot \cos 4 \cdot \cos 5 < 0$$

84.
$$\frac{(p^2 - q^2)^2}{pq} = \frac{(4\tan A \sin A)^2}{\tan^2 A - \sin^2 A} = 16$$

85.
$$0 < \sin \alpha < \cos \alpha < 1$$
 $\alpha \in \left(0, \frac{\pi}{4}\right)$

$$(\sin \alpha)^{\cos \alpha} < (\sin \alpha)^{\sin \alpha}$$

 $(\cos \alpha)^{\cos \alpha} < (\cos \alpha)^{\sin \alpha}$

86.
$$32\sin\frac{A}{2}\sin\frac{5A}{2} = 16(\cos 2A - \cos 3A)$$

$$= 16[(2\cos^2 A - 1) - (4\cos^3 A - 3\cos A)]$$

87.
$$\cos \alpha \cos \beta - \sin \alpha \sin \beta + \sin \alpha \cos \beta - \cos \alpha \sin \beta = 0$$

$$\cos\alpha(\cos\beta - \sin\beta) + \sin\alpha(\cos\beta - \sin\beta) = 0$$

$$(\cos\beta - \sin\beta)(\cos\alpha + \sin\alpha) = 0$$

$$\cos \alpha = -\sin \alpha$$

$$\tan \alpha = -1$$

 $(:: \cos\beta \neq \sin\beta)$

Solution of Advanced Problems in Mathematics for JEE

88.
$$2^{x} = 3^{y} = 6^{-z} = k$$

 $x = \log_{2} k, y = \log_{3} k, z = -\log_{6} k$
 $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0$

89.
$$(\sin \alpha + \sin \beta)^2 + (\cos \alpha + \cos \beta)^2 = \left(\frac{-21}{65}\right)^2 + \left(\frac{-27}{65}\right)^2$$

 $2 + 2\cos(\alpha - \beta) = \frac{1170}{(65)^2} = 4\cos^2\left(\frac{\alpha - \beta}{2}\right)$

90.
$$\mu^2 = a^2 + b^2 + 2\sqrt{(a^2\cos^2\theta + b^2\sin^2\theta)(a^2\sin^2\theta + b^2\cos^2\theta)}$$

= $a^2 + b^2 + 2\sqrt{a^2b^2 + (a^4 + b^4 - 2a^2b^2)\sin^2\theta\cos^2\theta}$

91.
$$Q = \sum_{r=0}^{n} \frac{\sin(3^r \theta) \cos(3^r \theta)}{\cos(3^r \theta) \cos(3^{r+1} \theta)} = \frac{1}{2} \sum_{r=0}^{n} \tan(3^{r+1} \theta) - \tan(3^r \theta) = \frac{1}{2} P$$

92. When $270^{\circ} < \theta < 360^{\circ}$, we have

$$\sqrt{2(1+\cos\theta)} = \sqrt{\left(2\cos^2\frac{\theta}{2}\right)}$$

which is non-negative. Now, the above equation can be written as

$$\sqrt{2(1+\cos\theta)} = 2\left|\cos\frac{\theta}{2}\right|$$

$$= -2\cos\frac{\theta}{2}$$

$$\left(\because \cos\frac{\theta}{2} < 0 \text{ when } 135^{\circ} < \frac{\theta}{2} < 180^{\circ}\right)$$

Now, let us consider that $\sqrt{2 + \sqrt{2(1 + \cos \theta)}}$

which is not-negative. That is,

$$\sqrt{2 + \sqrt{2(1 + \cos \theta)}} = \sqrt{2 - 2\cos\frac{\theta}{2}}$$

$$= \sqrt{2}\sqrt{1 - \cos\frac{\theta}{2}} = \sqrt{2}\sqrt{2\sin^2\frac{\theta}{4}}$$

$$= 2\left|\sin\frac{\theta}{4}\right|$$

$$= 2\sin\frac{\theta}{4}$$

$$\left(\because \sin\frac{\theta}{4} > 0 \text{ when } \frac{135^\circ}{2} < \frac{\theta}{4} < 90^\circ\right)$$

93. We know that
$$-\sqrt{2} \le \sin x + \cos x \le \sqrt{2}$$

When $x = -\frac{3\pi}{4}$, we have $\sin x + \cos x = -\sqrt{2}$

when
$$x = -\frac{3 \pi}{4}$$
, we have $y = -\sqrt{2} + 1 < 0$

which implies that options (1) and (2) are incorrect.

Now, at
$$x = \frac{\pi}{4}$$
, we have $\sin x + \cos x = \sqrt{2}$

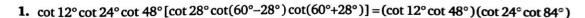
That is, $(\sin 4x + \cos 4x)^2 \neq 2$. Therefore, $y \neq \sqrt{2} + 2$ for any $x \in R$. which implies that option (4) is incorrect.

Note: The maximum value of $\sin x + \cos x$ is $\sqrt{2}$, for $x = \frac{\pi}{4}$ and the maximum value of $(\sin 4x + \cos 4x)^2$ is 2, for $x = \frac{\pi}{16}$.

94.
$$(\cos x + \cos y)^2 + (\sin x + \sin y)^2 = (-\cos z)^2 + (-\sin z)^2$$

95.
$$\frac{1}{\sin 10^{\circ}} + \frac{1}{\sin 50^{\circ}} - \frac{1}{\sin 70^{\circ}} = \frac{\sin 50^{\circ} \sin 70^{\circ} + \sin 10^{\circ} \sin 70^{\circ} - \sin 10^{\circ} \sin 50^{\circ}}{\sin 10^{\circ} \sin 50^{\circ} \sin 70^{\circ}}$$
$$= \frac{\frac{1}{2} (\cos 20^{\circ} - \cos 120^{\circ} + \cos 60^{\circ} - \cos 80^{\circ} - \cos 40^{\circ} + \cos 60^{\circ})}{\frac{1}{4} \sin 30^{\circ}}$$
$$= \frac{\frac{1}{2} (\frac{3}{2} + \cos 20^{\circ} - 2\cos 60^{\circ} \cos 20^{\circ})}{\frac{1}{4} \sin 30^{\circ}} = 6$$

Exercise-2: One or More than One Answer is/are Correct



$$= \frac{\cot 36^{\circ}}{\cot 72^{\circ}} \times \frac{\cot 72^{\circ}}{\cot 36^{\circ}} = 1$$
2.
$$\cot^{4} x - 2(1 + \cot^{2} x) + a^{2} = 0$$

$$\Rightarrow \cot^{4} x - 2\cot^{2} x + a^{2} - 2 = 0$$

$$\Rightarrow (\cot^{2} x - 1)^{2} = 3 - a^{2}$$

to have atleast one solution

$$3 - a^{2} \ge 0$$

$$a^{2} - 3 \le 0$$

$$a \in [-\sqrt{3}, \sqrt{3}]$$

308

Integral values -1, 0, 1

3. (A)
$$\tan 1 > \tan^{-1} 1 \implies \tan 1 > \frac{\pi}{4}$$

(B)
$$\sin 1 > \cos 1$$

$$\sin 57.3^{\circ} > \cos 57.3^{\circ}$$

(C)
$$\tan 1 < \sin 1$$
 (not possible)

www.jeebooks.in

Because $\tan 57.3 > 1 > \sin 57.3^{\circ}$

(D)
$$\cos 1 < \frac{\pi}{4}$$

$$\Rightarrow$$
 $\cos(\cos 1) > \cos\left(\frac{\pi}{4}\right)$

- **4.** (A) $\tan 1 > 1$ and $\sin 1 < 1$, then $\log_{\sin 1} \tan 1 < 0$
 - (B) $1 + \tan 3 < 1$ and $\cos 1 < 1$, then $\log_{\cos 1} (1 + \tan 3) > 0$
 - (C) $\cos \theta + \sec \theta > 2$ and $\log_{10} 5 < 1$, then $\log_{\log 10} 5(\cos \theta + \sec \theta) < 0$
 - (D) $2 \sin 18^{\circ} < 1$ and $\tan 15^{\circ} < 1$, then $\log_{\tan 15^{\circ}} 2 \sin 18^{\circ} > 0$

5. Put
$$\sin \alpha = \frac{2 \tan \left(\frac{\alpha}{2}\right)}{1 + \tan^2 \left(\frac{\alpha}{2}\right)}$$
, $\cos \alpha = \frac{1 - \tan^2 \left(\frac{\alpha}{2}\right)}{1 + \tan^2 \left(\frac{\alpha}{2}\right)}$

6. Given
$$\frac{\sin(2\alpha + \beta)}{\sin\beta} = \frac{3}{1}$$

Option (C)
$$\frac{\sin(2\alpha + \beta) + \sin\beta}{\sin(2\alpha + \beta) - \sin\beta} = \frac{3+1}{3-1}$$
 (Use C and D method)

$$tan(\alpha + \beta) = 2 tan \alpha$$

Option (B)
$$3\sin\beta = \sin(2\alpha + \beta)$$

$$2\sin\beta = \sin(2\alpha + \beta) - \sin\beta$$

$$2\sin\beta = 2\cos(\alpha + \beta)\sin\alpha$$

Option (D)
$$3 \sin \beta = \sin \{\alpha + (\alpha + \beta)\}\$$

$$3\sin\beta = \sin\alpha\cos(\alpha + \beta) + \cos\alpha\sin(\alpha + \beta)$$

Subtract from (B) option

$$2\sin\beta = \cos\alpha\sin(\alpha + \beta)$$

$$2\sin\beta = \cos\alpha\sin(\alpha + \beta)$$
Option (A) $\cot\beta - 3\cot(2\alpha + \beta) = \frac{\cos\beta}{\sin\beta} - 3\frac{\cos(2\alpha + \beta)}{\sin(2\alpha + \beta)}$

$$= \frac{\cos \beta}{\sin \beta} - 3 \frac{\cos(2\alpha + \beta)}{3 \sin \beta} = \frac{2 \sin(\alpha + \beta) \sin \alpha}{\sin \beta} = 4 \tan \alpha \quad \text{(from D)}$$

Also
$$\cot \alpha + \cot(\alpha + \beta) = \frac{3}{2} \cot \alpha$$
 (from C)

Compound Angles

309

Now multiply the two relations.

7.
$$\sin(x + 20^\circ) = \sin(x + 40^\circ) + \sin(x - 40^\circ)$$
 $\sin(x + 20^\circ) - \sin(x - 40^\circ) = \sin(x + 40^\circ)$
 $\cos(x - 10^\circ) = \sin(x + 40^\circ) = \cos[90^\circ - (x + 40^\circ)]$
 $\Rightarrow x = 30^\circ \text{ now check the option, only (a) and (b) satisfy}$

8. $2\Sigma(\cos x \cos y) + 2\Sigma(\sin x \sin y) + 3 = 0$
 $(\Sigma \cos x)^2 + (\Sigma \sin x)^2 = 0$
 $\Rightarrow \Sigma \cos x = 0 \text{ and } \Sigma \sin x = 0$
 $\cos 3x + \cos 3y + \cos 3z = 4(\cos^3 x + \cos^3 y + \cos^3 z) - 3(\cos x + \cos y + \cos z)$
 $= 12\cos x \cos y \cos z$

9. $0 < \sin x < 1$, $0 < \cos x < 1$
If $\sin^n x + \cos^n x = 1$ $n = 2$
 $\sin^n x + \cos^n x > 1$ $n < 2$
 $\sin^n x + \cos^n x < 1$ $n > 2$

10. If $x = \sin(\alpha - \beta)\sin(\gamma - \delta)$
 $2x = \cos(\alpha - \beta - \gamma + \delta) - \cos(\alpha - \beta + \gamma - \delta)$
 $y = \sin(\beta - \gamma)\sin(\alpha - \delta)$
 $\Rightarrow 2y = \cos(\beta - \gamma - \alpha + \delta) - \cos(\gamma - \alpha + \beta + \delta)$
 $2z = \cos(\gamma - \alpha - \beta + \delta) - \cos(\gamma - \alpha + \beta + \delta)$
 $2z = \cos(\gamma - \alpha - \beta + \delta) - \cos(\gamma - \alpha + \beta + \delta)$
 $2z + 2y + 2z = 0 \Rightarrow x + y + z = 0$
If $x + y + z = 0$ then $x^3 + y^3 + z^3 = 3xyz$

11. $X^2 + 4XY + Y^2 = (x \cos \theta - y \sin \theta)^2 + (x \sin \theta + y \cos \theta)^2$
 $= x^2 + y^2 + 4(x^2 \sin \theta \cos \theta - y^2 \sin \theta \cos \theta + xy(\cos^2 \theta - \sin^2 \theta))$
 $= x^2(1 + 4 \sin \theta \cos \theta) + y^2(1 - 4 \sin \theta \cos \theta) + 4xy(\cos^2 \theta - \sin^2 \theta)$
 $\cos^2 \theta - \sin^2 \theta = 0$
 $\Rightarrow \theta = \frac{\pi}{4}$ $(0 \le \theta \le \pi / 2)$
 $x^2 + 4XY + Y^2 = 3x^2 - y^2$
 $\Rightarrow A = 3$ and $B = -1$

12. (A) $2(a + d) = 2(b + c)$
(B) $\tan 50^\circ = \tan 70^\circ$

310 Solution of Advanced
$$3$$

$$\Rightarrow 2a + 2b = 2c$$
(D) $\tan 20^{\circ} - 2 \tan 10^{\circ} = \tan 20^{\circ} \tan^{2} 10^{\circ} > 0$

$$\Rightarrow \tan 20^{\circ} > 2 \tan 10^{\circ}$$

$$\Rightarrow b > a \text{ and } d > c$$
13. (A) $\frac{1}{2}(2 \sin 75^{\circ} \cos 75^{\circ}) = \frac{1}{2} \sin 150^{\circ} = \frac{1}{4}$
(B) $\log_{2}^{28} = 2 + \log_{2}^{7} \text{ (irrational)}$
(C) $\log_{3}^{5} \cdot \log_{5}^{6} = \log_{3}^{6} = 1 + \log_{3}^{2} \text{ (irrational)}$
(D) $8^{-\log_{27}^{3}} = 8^{-1/3} = \frac{1}{2}$
14. $\alpha - \beta = \sin x \cos x (\cos^{2} x - \sin^{2} x) = \frac{1}{2} \sin 2x \cos 2x = \frac{1}{4} \sin 4x$

14.
$$\alpha - \beta = \sin x \cos x (\cos^2 x - \sin^2 x) = \frac{1}{2} \sin 2x \cos 2x = \frac{1}{4} \sin 4x$$

 $\alpha + \beta = \sin x \cos x = \frac{1}{2} \sin 2x$

15.
$$\sqrt{2 + \sqrt{2 + 2\cos 4\theta}} = \sqrt{2 + \sqrt{2(1 + \cos 4\theta)}}$$
$$= \sqrt{2 + \sqrt{4\cos^2 2\theta}}$$
$$= \sqrt{2 + 2|\cos 2\theta|}$$

If
$$\pi < 2\theta < 3\pi / 2$$
 then $\frac{\pi}{2} < \theta < \frac{3\pi}{4}$

$$\sqrt{2 + 2 |\cos 2\theta|} = \sqrt{2 - 2\cos 2\theta} = 2 |\sin \theta| = 2\sin \theta$$
If $\frac{3\pi}{2} < 2\theta < 2\pi$ then $\frac{3\pi}{4} < \theta < \pi$

$$\sqrt{2 + 2 |\cos 2\theta|} = \sqrt{2 + 2\cos 2\theta} = 2 |\cos \theta| = -2\cos \theta$$

16.
$$1 + \tan \alpha + \tan^2 \alpha = \tan^3 \alpha$$

$$\Rightarrow 1 + \tan^2 \alpha = \tan \alpha (\tan^2 \alpha - 1)$$

18.
$$\alpha > \frac{1}{\sin^6 x + \cos^6 x} \Rightarrow \alpha > \frac{1}{1 - 3\sin^2 x \cos^2 x}; 1 \le \frac{1}{1 - 3\sin^2 x \cos^2 x} \le 4$$

19.
$$\log_{10} \sin x + \log_{10} \cos x + 2\log_{10} \cot x + \log_{10} \tan x = -1$$

 $\log_{10} (\sin x \cdot \cos x \cdot \cot x) = k = \log_{10} \cos^2 x = -1$

20.
$$\tan A + \tan B + \tan C = \tan A \tan B \tan C$$

$$\frac{3}{\tan C} + \frac{6}{\tan C} + \tan C = \frac{3}{\tan C} \cdot \frac{6}{\tan C} \cdot \tan C$$

$$\Rightarrow \tan^2 C = 9 \Rightarrow \tan C = 3$$

Compound Angles

21.
$$\frac{(1-\cot x)}{\sin^2 x} = (1-\cot x) \cdot \csc^2 x$$

$$=(1-\cot x)(1+\cot^2 x)$$

22.
$$f(x) = \frac{1}{2} \left[2\sin^2 x + 2\sin^2 \left(x + \frac{2\pi}{3} \right) + 2\sin^2 \left(x + \frac{4\pi}{3} \right) \right]$$

23.
$$y = \frac{\tan x}{\tan 3x} = \frac{1 - 3\tan^2 x}{3 - \tan^2 x}$$

$$\tan^2 x = \frac{1 - 3y}{3 - y} > 0$$

24.
$$\sqrt{2}\sin(A-B) = \cos B(\sin B - \sin^3 B) - \sin B(\cos B + \cos^3 B)$$

$$=-\sin B\cos B$$

$$= -\frac{1}{2}\sin 2B \implies \sin(A - B) = -\frac{\sin 2B}{2\sqrt{2}}$$

25.
$$\alpha > \frac{1}{\sin^6 x + \cos^6 x} \Rightarrow \alpha > \frac{1}{1 - 3\sin^2 x \cos^2 x}; \quad 1 \le \frac{1}{1 - 3\sin^2 x \cos^2 x} \le 4$$

26.
$$1 + \tan \alpha + \tan^2 \alpha = \tan^3 \alpha$$

$$\Rightarrow$$
 1 + tan² α = tan α (tan² α - 1)

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

- **1.** $\theta = 286.5^{\circ}$ (IV quadrant) l < 0, m > 0
- 2. $\tan(-1042^\circ) = -\tan(1080^\circ 38^\circ) = \tan 38^\circ < \tan 45^\circ$
- **3.** $\theta = 401.1^{\circ}$ (I quadrant) l > 0, m > 0

Paragraph for Question Nos. 4 to 6

$$a = \sin \alpha$$
 $b = \sin \left(\alpha + \frac{2\pi}{3}\right)$ $c = \sin \left(\alpha + \frac{4\pi}{3}\right)$

$$p = \cos \alpha$$
 $q = \cos \left(\alpha + \frac{2\pi}{3}\right)$ $r = \cos \left(\alpha + \frac{4\pi}{3}\right)$

4.
$$a+b+c = \sin \alpha + \sin \left(\alpha + \frac{2\pi}{3}\right) + \sin \left(\alpha + \frac{4\pi}{3}\right)$$

= $\sin \alpha + 2\sin(\alpha + \pi)\cos\left(\frac{\pi}{3}\right) = 0$

$$5. \quad ab + bc + ac = \sin\alpha\sin\left(\alpha + \frac{2\pi}{3}\right) + \sin\left(\alpha + \frac{2\pi}{3}\right)\sin\left(\alpha + \frac{4\pi}{3}\right) + \sin\alpha\sin\left(\alpha + \frac{4\pi}{3}\right)$$
$$= \frac{1}{2}\left[\cos\frac{2\pi}{3} - \cos\left(2\alpha + \frac{2\pi}{3}\right) + \cos\frac{2\pi}{3} - \cos(2\alpha + 2\pi) + \cos\frac{4\pi}{3} - \cos\left(2\alpha + \frac{4\pi}{3}\right)\right] = \frac{-3}{4}$$

6.
$$qc - rb = \cos\left(\alpha + \frac{2\pi}{3}\right)\sin\left(\alpha + \frac{4\pi}{3}\right) - \cos\left(\alpha + \frac{4\pi}{3}\right)\sin\left(\alpha + \frac{2\pi}{3}\right) = \sin\frac{2\pi}{3} = \frac{\sqrt{3}}{2}$$

Paragraph for Question Nos. 7 to 8

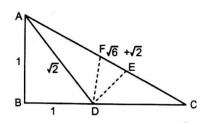
7.
$$\tan A = \sqrt{7 + 4\sqrt{3}} = \cot C$$

$$\sqrt{\tan A + \cot C} = \sqrt{2\sqrt{7 + 4\sqrt{3}}}$$

$$= \sqrt{2(2 + \sqrt{3})} = \sqrt{4 + 2\sqrt{3}}$$

$$= \sqrt{3} + 1$$

$$(AC) \cdot (\sqrt{2} + \sqrt{6}) \cdot (\sqrt{2} + \sqrt{6}) \cdot (\sqrt{2} + \sqrt{6})$$



8.
$$\log_{AE} \left(\frac{AC}{CD} \right) = \log_{\sqrt{2}} \left(\frac{\sqrt{2} + \sqrt{6}}{1 + \sqrt{3}} \right) = \log_{\sqrt{2}}^{\sqrt{2}} = 1$$

Paragraph for Question Nos. 9 to 10

9. In a
$$\triangle ABC$$
, $\cot A + \cot B + \cot C \ge \sqrt{3} \Rightarrow \cot \theta \ge \sqrt{3}$

10.
$$\cot \theta - \cot A = \cot B + \cot C \Rightarrow \sin(A - \theta) = \frac{\sin^2 A \sin \theta}{\sin B \sin C}$$

 $\sin(B - \theta) = \frac{\sin^2 B \cdot \sin \theta}{\sin A \sin C}$ and $\sin(C - \theta) = \frac{\sin^2 C \sin \theta}{\sin A \sin B}$

Paragraph for Question Nos. 11 to 12

11.
$$f(x) = \frac{\left|\cos\frac{x}{2}\right| + \left|\sin\frac{x}{2}\right|}{\left|\cos\frac{x}{2}\right| - \left|\sin\frac{x}{2}\right|}$$

12. If
$$\frac{\pi}{2} < \frac{x}{2} < \pi \implies f(x) = \frac{-\cos\frac{x}{2} + \sin\frac{x}{2}}{-\cos\frac{x}{2} - \sin\frac{x}{2}} = \frac{1 - \tan\frac{x}{2}}{1 + \tan\frac{x}{2}}$$

Compound Angles

313

Exercise-4: Matching Type Problems

1. (A) If
$$A + B = 45^{\circ}$$
 then $(1 + \tan A)(1 + \tan B) = 2$

(B)
$$a^2 - 5a \le 6 \sin x \quad \forall \quad x \in R$$

$$a^2 - 5a \le -6$$

$$a^2-5a+6\leq 0 \Rightarrow (a-3)(a-2)\leq 0$$

(C)
$$\frac{\left(a+\frac{1}{a}\right)^4 - \left(a^4 + \frac{1}{a^4} + 2\right)}{\left(a+\frac{1}{a}\right)^2 + a^2 + \frac{1}{a^2}} = \frac{\left(a+\frac{1}{a}\right)^4 - \left(a^2 + \frac{1}{a^2}\right)^2}{\left(a+\frac{1}{a}\right)^2 + a^2 + \frac{1}{a^2}} = \left(a+\frac{1}{a}\right)^2 - \left(a^2 + \frac{1}{a^2}\right) = 2$$

(D)
$$\sum_{k=1}^{3} (x-k)^2 = (x-1)^2 + (x-2)^2 + (x-3)^2 = 0$$
 No real root

2. (A)
$$y = \frac{1 - \tan^2(\pi/4 - x)}{1 + \tan^2(\pi/4 - x)} = \cos(\pi/2 - 2x) = \sin 2x$$

(B)
$$0 \le \log_3 \left(\frac{5 \sin x - 12 \cos x + 26}{13} \right) \le 1$$

(C)
$$y = -2\sin^2 x + \cos x + 3 = 2\cos^2 x + \cos x + 1 = 2\left(\cos x + \frac{1}{4}\right)^2 + \frac{7}{8}$$

(D)
$$y = 4 \sin^2 \theta + 4 \sin \theta \cos \theta + \cos^2 \theta = (2 \sin \theta + \cos \theta)^2$$

4. (A)
$$\cos^2 x = \left(\frac{1}{5} - \sin x\right)^2$$

$$\Rightarrow (5\sin x - 4)(5\sin x + 3) = 0$$

$$\Rightarrow \qquad \sin x = \frac{4}{5} \quad \text{or } -\frac{3}{5}$$

(B)
$$\cot \frac{\theta}{2} = 1 + \cot \theta$$

$$\Rightarrow 2\cos^2\frac{\theta}{2} = \cos\theta + \sin\theta$$

$$\Rightarrow \qquad \sin \theta = 1 \qquad \Rightarrow \qquad \theta = -\frac{3\pi}{2}, \frac{\pi}{2}$$

(C)
$$f(x) = -\sin^4 x + 8\sin^2 x + 2$$

$$\Rightarrow f(x) \in [2, 9]$$

(D)
$$\log_2 \frac{(2x^2 + 5x + 27)}{(2x - 1)^2} \ge 0$$
 $\left(x > \frac{1}{2}\right)$

314

Solution of Advanced Problems in Mathematics for JEE

$$\Rightarrow 2x^2 - 9x - 26 \le 0$$

$$\Rightarrow -2 \le x \le \frac{13}{2}$$

5. (A)
$$f(x) = -2\sin^2 x + \sin x - 6$$

 $y_{\text{min}} = -9$ at $\sin x = -1$
 $y_{\text{max}} = -\frac{47}{8}$ at $\sin x = \frac{1}{4}$

(B)
$$f(x) = 2\cos^2 x + 6$$

 $y_{\min} = 6$; $y_{\max} = 8$
(C) $f(x) = \frac{1}{2} [4\sin 2x - 1 + \cos 2x + 3(1 + \cos 2x)]$
 $= \frac{1}{2} [2 + 4\sin 2x + 4\cos 2x]$
 $= 1 + 2(\sin 2x + \cos 2x)$
 $y_{\max} = 1 + 2\sqrt{2}$; $y_{\min} = 1 - 2\sqrt{2}$

(D) $f(x) = \sqrt{2} \sin\left(\frac{\pi}{4} + \sin x\right)$

Exercise-5 : Subjective Type Problems

1.
$$\frac{\sin 80^{\circ} \sin 65^{\circ} \sin 35^{\circ}}{2 \sin 35^{\circ} \cos 15^{\circ} + 2 \sin 35^{\circ} \cos 35^{\circ}} = \frac{\sin 80^{\circ} \sin 65^{\circ}}{2(\cos 15^{\circ} + \cos 35^{\circ})} = \frac{\sin 80^{\circ} \sin 65^{\circ}}{4 \cos 25^{\circ} \cos 10^{\circ}} = \frac{1}{4}$$

2. If
$$A + B = 45^{\circ}$$

$$(1-\cot A)(1-\cot B) = 2$$

 $(1-\cot 23^\circ)(1-\cot 22^\circ) = 2$
 $4x^2-7x+1=0$

3.
$$4x^2 - 7x + 1 = 0$$
$$\tan A + \tan B = \frac{7}{4}$$

$$\tan A \cdot \tan B = \frac{1}{4}$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A + \tan B} = \frac{7}{3}$$

$$4\sin^2(A+B) - 7\sin(A+B)\cos(A+B) + \cos^2(A+B)$$

$$=\frac{4\tan^2(A+B)-7\tan(A+B)+1}{1+\tan^2(A+B)}=1$$

4.
$$\frac{(18-2)\times 180^{\circ}}{18} + \frac{(n-2)\times 180^{\circ}}{n} + 60^{\circ} = 360^{\circ} \Rightarrow n = 9$$
5.
$$10(1-\cos 2\alpha)^{2} + 15(1+\cos 2\alpha)^{2} = 24$$

$$\Rightarrow (5\cos 2\alpha + 1)^{2} = 0 \Rightarrow \cos 2\alpha = -\frac{1}{5} \Rightarrow \tan^{2}\alpha = \frac{3}{2}$$
6.
$$\tan\left(\frac{3\pi}{8} - \frac{\pi}{8}\right)\left(\tan\frac{3\pi}{8} - \tan\frac{\pi}{8}\right) + \tan\left(\frac{5\pi}{8} - \frac{3\pi}{8}\right)\left(\tan\frac{5\pi}{8} - \tan\frac{3\pi}{8}\right) + \tan\left(\frac{7\pi}{8} - \frac{5\pi}{8}\right)\left(\tan\frac{9\pi}{8} - \tan\frac{7\pi}{8}\right) = \tan\frac{9\pi}{8} - \tan\frac{\pi}{8} = 0$$
7.
$$\frac{\cos\frac{2\pi}{7} + 2\cos^{2}\frac{\pi}{7}}{\cos\frac{\pi}{7}\cos\frac{2\pi}{7}} = \frac{4\left(\cos\frac{2\pi}{7} + 2\cos^{2}\frac{\pi}{7}\right)\sin\frac{\pi}{7}}{\sin\frac{4\pi}{7}} = \frac{4\left(1 + 2\cos\frac{2\pi}{7}\right)\sin\frac{\pi}{7}}{\sin\frac{\pi}{7}} = \frac{4\left(1 + 2\cos\frac{2\pi}{7}\right)\sin\frac{\pi}{7}}{\sin\frac{\pi}{7}} = 4\frac{4\left(1 + 2\cos\frac{2\pi}{7}\right)\sin\frac{\pi}{7}}{\cos\frac{\pi}{7}} = 4\frac{4\left(1 + 2\cos\frac{\pi}{7}\right)\sin\frac{\pi}{7}}{\sin\frac{\pi}{7}} = 4\frac{4\left(1 + 2\cos\frac{\pi}{7}\right)\sin\frac{\pi}{7}}{\sin\frac{$$

 $\frac{1}{a} + \frac{1}{b} - \frac{1}{c} = \frac{1}{\sin 10^{\circ}} + \frac{1}{\sin 50^{\circ}} - \frac{1}{\sin 70^{\circ}} = \frac{\sin 50^{\circ} \sin 70^{\circ} + \sin 10^{\circ} \sin 70^{\circ} - \sin 10^{\circ} \sin 50^{\circ}}{\sin 10^{\circ} \sin 50^{\circ} \sin 70^{\circ}} = 6$

12.
$$\frac{1}{4} \left[4\sin^3\theta + 4\sin^3\left(\theta + \frac{2\pi}{3}\right) + 4\sin^3\left(\theta + \frac{4\pi}{3}\right) \right]$$

$$= \frac{1}{4} \left[3\sin\theta - \sin 3\theta + 3\sin\left\{\left(\theta + \frac{2\pi}{3}\right) - \sin(3\theta + 2\pi) + 3\sin\left(\theta + \frac{4\pi}{3}\right) - \sin(3\theta + 4\pi)\right\} \right]$$

$$= \frac{1}{4} \left[3\left\{\sin\theta + \sin\left(\theta + \frac{2\pi}{3}\right) + \sin\left(\theta + \frac{4\pi}{3}\right)\right\} - 3\sin 3\theta \right] = -\frac{3}{4}\sin 3\theta$$

13.
$$\sum_{r=1}^{n} \frac{\sin(2^{r} - 2^{r-1})}{\cos 2^{r} \cos 2^{r-1}} = \sum_{r=1}^{n} (\tan 2^{r} - \tan 2^{r-1}) = \tan 2^{n} - \tan 1$$

14.
$$x = \sec \theta - \tan \theta$$
, $y = \csc \theta + \cot \theta$

$$y - x - xy = \frac{1 + \cos \theta}{\sin \theta} - \frac{1 - \sin \theta}{\cos \theta} - \frac{(1 - \sin \theta)(1 + \cos \theta)}{\sin \theta \cdot \cos \theta} = 1$$

15.
$$\cos 18^{\circ} - \cos 72^{\circ} = 2 \sin 45^{\circ} \sin 27^{\circ}$$

= $\sqrt{2} \sin 27^{\circ}$

16.
$$3(\sin 1 - \cos 1)^4 + 6(\sin 1 + \cos 1)^2 + 4(\sin^6 1 + \cos^6 1)$$

= $3(1 - 2\sin 1\cos 1)^2 + 6(1 + 2\sin 1\cos 1) + 4(1 - 3\sin^2 1\cos^2 1)$
= $3(1 + 4\sin^2 1\cos^2 1 - 4\sin 1\cos 1) + 10 + 12\sin 1\cos 1 - 12\sin^2 1\cos^2 1$
= 13

17.
$$3^{\sin 2x + 2\cos^2 x} + \frac{3^3}{3^{\sin 2x + 2\cos^2 x}} = 28$$

Let
$$3^{\sin 2x + 2\cos^2 x} = t$$
, $t^2 - 28t + 27 = 0 \Rightarrow t = 1,27$
If $t = 1 \Rightarrow \sin 2x + 2\cos^2 x = 0$
 $2\cos x(\sin x + \cos x) = 0 \Rightarrow x = \frac{\pi}{2}, \frac{3\pi}{4}, \frac{7\pi}{4}$

If
$$t = 27$$

$$\Rightarrow \sin 2x + 2\cos^2 x = 3 \qquad \text{(Not possible)}$$

$$(\sin 2\alpha - \cos 2\alpha)^2 + 8\sin 4\alpha = 1 + 7\sin 4\alpha = 1 \qquad (\cot \alpha = \frac{\pi}{2}, \frac{3\pi}{4}, \frac{7\pi}{4})$$

18.
$$(\sin \theta + \csc \theta)^2 + (\cos \theta + \sec \theta)^2$$

= $5 + \csc^2 \theta + \sec^2 \theta$
= $7 + \tan^2 \theta + \cot^2 \theta$
 ≥ 9

19.
$$\tan 20^\circ + \tan 40^\circ + \tan 80^\circ - \tan 60^\circ$$

$$= \frac{\sin 20^\circ \cos 80^\circ + \sin 80^\circ \cos 20^\circ}{\cos 20^\circ \cos 80^\circ} + \frac{\sin 40^\circ \cos 60^\circ - \sin 60^\circ \cos 40^\circ}{\cos 40^\circ \cos 60^\circ}$$

Compound Angles sin 100° sin 20° cos 20° cos 80° cos 40° cos 60° sin 80° 2 sin 20° cos 20° cos 80° cos 40° sin 80° cos 40° - sin 40° cos 80° sin 40° cos 20° cos 40° cos 80° cos 20° cos 40° cos 80° $= \frac{8 \sin 40^{\circ} \sin 20^{\circ}}{\sin (8 \times 20^{\circ})} = 8 \sin 40^{\circ}$ 20. $1 + \cos 10x \cos 6x = 2\cos^2 8x + \sin^2 8x$ $2 + \cos 16x + \cos 4x = 2(1 + \cos 16x) + 1 - \cos 16x$ \Rightarrow $\cos 4x = 1$ $x = \frac{n\pi}{2}$ $(n = 0, \pm 1, \pm 2, \pm 3....)$ If $360^{\circ} < k < 540^{\circ}$ $k = 450^{\circ} (n = 5)$ 21. $\cos 20^{\circ} + 2 \sin^2 55^{\circ} = 1 + \sqrt{2} \sin k^{\circ}$

$$\Rightarrow k = 450^{\circ} \quad (n = 5)$$
21.
$$\cos 20^{\circ} + 2 \sin^{2} 55^{\circ} = 1 + \sqrt{2} \sin k^{\circ}$$

$$= \cos 20^{\circ} + 1 - \cos 110^{\circ}$$

$$= 1 + \cos 20^{\circ} + \sin 20^{\circ}$$

$$= 1 + \sqrt{2} \sin(45^{\circ} + 20^{\circ})$$

$$\Rightarrow k = 65$$

23.
$$\tan 19x = \frac{\cos 96^\circ + \cos 6^\circ}{\cos 96^\circ - \cos 6^\circ} = -\frac{2\cos 51^\circ \cos 45^\circ}{2\sin 51^\circ \sin 45^\circ} = -\cot 51^\circ = \tan 141^\circ$$

$$\Rightarrow 19x = 180^\circ n + 141$$

24.
$$\frac{2\sin 40^{\circ} + \sin 20^{\circ}}{\cos 20^{\circ} \cos 30^{\circ}} = \frac{2\sin (60^{\circ} - 20^{\circ}) + \sin 20^{\circ}}{\cos 20^{\circ} \cos 30^{\circ}}$$

25.
$$\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} - 1 = \frac{\sin \frac{3\pi}{7}}{\sin \frac{\pi}{7}} \cdot \cos \frac{4\pi}{7} - 1 = \frac{-3}{2}$$

26.
$$\frac{k}{2}(\cos 2A - \cos 3A) = \frac{11}{8}$$

 $\frac{k}{2}[2\cos^2 A - 1 - 4\cos^3 A + 3\cos A] = \frac{11}{8}$
 $\Rightarrow k = 4$

27.
$$3\sin^2 x + 4\cos^2 x = 3 + \cos^2 x$$

28.
$$\tan \alpha + \tan \beta = 12$$

 $\tan \alpha \cdot \tan \beta = -3$

Solution of Advanced Problems in Mathematics for JEE

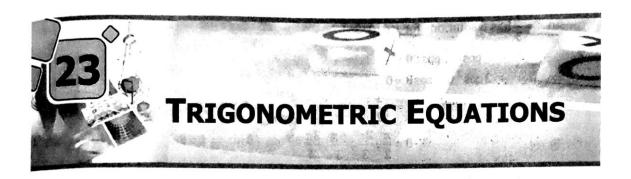
$$\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = 3$$
29.
$$\frac{\cos 24^{\circ} \cos 33^{\circ}}{2 \sin 33^{\circ} \sin^{2} 57^{\circ}} + \left(\frac{\sin 18^{\circ} \cos 9^{\circ}}{\sin 9^{\circ}} - \cos 18^{\circ}\right)$$

$$\frac{\cos 24^{\circ} \cos 33^{\circ}}{\sin 57^{\circ} \cos 24^{\circ}} + \frac{\sin 9^{\circ}}{\sin 9^{\circ}} = 2$$
30.
$$\tan \theta \left(\frac{1 + \cos 2\theta}{\cos 2\theta}\right) \left(\frac{1 + \cos 4\theta}{\cos 4\theta}\right) \left(\frac{1 + \cos 8\theta}{\cos 8\theta}\right)$$

$$\frac{\sin \theta}{\cos \theta} \left(\frac{2 \cos^{2} \theta}{\cos 2\theta}\right) \left(\frac{2 \cos^{2} 2\theta}{\cos 4\theta}\right) \left(\frac{2 \cos^{2} 4\theta}{\cos 8\theta}\right) = \frac{8 \sin \theta \cos \theta \cos 2\theta \cos 4\theta}{\cos 8\theta} = \frac{\sin 8\theta}{\cos 8\theta} = \tan 8\theta$$
31.
$$y = \sin^{2} x + \cos^{2} x + \tan^{2} x + \cot^{2} x + \csc^{2} x + 6$$

$$y = 9 + 2(\tan^{2} x + \cot^{2} x) \ge 13$$

Chapter 23 - Trigonometric Equations



Exercise-1: Single Choice Problems

1.
$$\tan^2 x - \sec^2 y = \frac{5a}{6} - 3 = -2 - a^2 \implies 6a^2 + 5a - 6 = 0$$

2.
$$[\tan(x+y) - \cot(x+y)]^2 + (x+1)^2 = 0$$

 $\Rightarrow x = -1 \text{ and } \tan^2(x+y) = 1$

$$x+y=n\pi\pm \frac{\pi}{4}$$

3.
$$\sin x + \cos x = 1$$

$$\sin \left(x + \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$$

$$x = n\pi + (-1)^n \frac{\pi}{4} - \frac{\pi}{4}$$

- 4. $\sin^2(\sin x) 3\sin(\sin x) + 2 = 0$ $\{\sin(\sin x) - 2\}\{\sin(\sin x) - 1\} = 0$ Equation has no solution.
- 5. $\tan 2x = \tan 6x \implies \sin 4x = 0$ $4x = \pi, 2\pi, 3\pi, \dots, 11\pi$ $x = \frac{\pi}{4}, \frac{2\pi}{4}, \frac{3\pi}{4}, \dots, \frac{11\pi}{4}$

But
$$\frac{\pi}{4}$$
, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$, $\frac{7\pi}{4}$, $\frac{9\pi}{4}$, $\frac{11\pi}{4}$ are rejected. So number of solutions = 5.

6. $3\sin^2 x - 6\sin x - \sin x + 2 = 0$ $(3\sin x - 1)(\sin x - 2) = 0$ $\sin x \neq 2$, then

$$\sin x = \frac{1}{3}$$

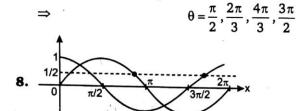
 \Rightarrow

 $\sin x = \frac{1}{2}$ has 6 solutions for $x \in [0, 5\pi]$

7.
$$\cos \theta + \cos 2\theta = -1$$

$$\Rightarrow 2\cos^2 \theta + \cos \theta = 0$$

$$\Rightarrow \cos \theta = 0 \text{ or } \cos \theta = -\frac{1}{2}$$



in $[0, 2\pi)$ max. $(\sin x, \cos x) = \frac{1}{2}$ has two solutions.

9.
$$(\cot^2 x + 2\sqrt{3}\cot x + 3) + (\cot^2 x + 1) + (4\csc x + 4) = 0$$

 $(\cot x + \sqrt{3})^2 + (\csc x + 2)^2 = 0$
 $\Rightarrow \cot x = -\sqrt{3} \text{ and } \csc x = -2$

10.
$$\sin^2 x = \sin^2 3x$$

 $\Rightarrow 3x = n\pi \pm x$
 $x = \frac{n\pi}{4}, x = \frac{n\pi}{2}$, hence general solution is $\frac{n\pi}{4}$.

11.
$$\sin x > 0$$

 $\Rightarrow 8 \sin^2 x \cos^2 x = 1$
 $\Rightarrow 2 \sin^2 2x = 1$
 $\Rightarrow \cos 4x = 0$
 $x = (2n+1)\frac{\pi}{8} \quad (n \in I)$

12.
$$\cos x + \cos 2x + \cos 3x + \cos 4x + \cos 5x = 5$$

$$\Rightarrow \cos x = 1 \cap \cos 2x = 1 \cap \cos 3x = 1 \cap \cos 4x = 1 \cap \cos 5x = 1$$

$$x = 2n\pi \cap x = n\pi \cap x = \frac{2n\pi}{3} \cap x = \frac{2n\pi}{4} \cap x = \frac{2n\pi}{5}$$

$$\Rightarrow x = 2n\pi$$

13.
$$(2 \sin x - \csc x)^2 + (\tan x - \cot x)^2 = 0$$

 $\Rightarrow \sin^2 x = \frac{1}{2} \cap \tan^2 x = 1 \Rightarrow x = n\pi \pm \frac{\pi}{4}$

Trigonometric Equations

321

$$\cos^3 3x + \cos^3 5x = (2\cos 4x \cos x)^3$$
$$\cos^3 3x + \cos^3 5x = (\cos 5x + \cos 3x)^3$$

$$\Rightarrow$$
 3 cos 5x cos 3x(cos 5x + cos 3x) = 0

$$\Rightarrow \cos 5x \cos 3x \cdot \cos 4x \cos x = 0$$

15.
$$\sin^{100} x = 1 + \cos^{100} x \implies \sin^{100} x = 1 \text{ and } \cos^{300} x = 0$$

16.
$$\sin \theta \le 1$$
 and $\sec^2 4\theta \ge 1 \Rightarrow \sin \theta = \sec 4\theta = 1$; $\theta = \frac{\pi}{2}$

17.
$$(4\sin^2 x + \csc^2 x) + (\tan^2 x + \cot^2 x) = 6$$

 $(2\sin x - \csc x)^2 + (\tan x - \cot x)^2 = 0$

$$2\sin x = \csc x$$
 and $\tan x = \cot x$

18.
$$\sin^4 \theta - 2 \sin^2 \theta + 1 = 2$$

$$(\sin^2 \theta - 1)^2 = 2 = \cos^4 \theta$$

(not possible)

19.
$$cos(P sin x) = sin(P cos x)$$

$$\cos(P\sin x) = \cos\left(\frac{\pi}{2} - P\cos x\right)$$

$$P\sin x + P\cos x = 2n\pi + \frac{\pi}{2}$$

$$P\sin x - P\cos x = 2n\pi - \frac{\pi}{2}$$

20.
$$|x|+|y|=2$$

$$\sin\left(\frac{\pi x^2}{3}\right) = 1$$

$$\frac{\pi x^2}{3} = \frac{\pi}{2}$$

$$x = \pm \sqrt{\frac{3}{2}}$$

21.
$$x \in \left(-\frac{\pi}{2}, \pi\right)$$

 $\cos 2x > |\sin x|$

$$\sin x \ge 0$$

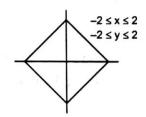
$$1-2\sin^2 x-\sin x>0$$

$$2\sin^2 x + 2\sin x - \sin x - 1 < 0$$

$$(2\sin x - 1)(\sin x + 1) < 0$$

$$2\sin^2 x - 2\sin x + \sin x - 1 < 0$$

$$(2\sin x + 1)(\sin x - 1) < 0$$



$$-\frac{1}{2} < \sin x \le \frac{1}{2}$$

$$\left(-\frac{\pi}{6}, \frac{\pi}{6}\right) \cup \left(\frac{5\pi}{6}, \pi\right)$$

22.
$$\sin^4 x + \cos^4 x = \sin x \cos x$$

$$1 - 2\sin^2 x \cos^1 x = \sin x \cos x$$

$$2y^2 + y - 1 = 0$$

$$(2y-1)(y+1)=0$$

$$y=\frac{1}{2}$$

$$y = -1$$

$$2\sin x\cos x = 1$$

 $\sin x \cos x \neq -1$

$$\sin 2x = 1$$

$$2x=\frac{\pi}{2},\frac{5\pi}{2}$$

$$x=\frac{\pi}{4},\frac{5\pi}{4}$$

23.
$$\sin \frac{5x}{2} = 1 \cap \sin \frac{x}{2} = -1$$

24.
$$\cos 2\theta = \sin^2 \theta \Rightarrow \sin^2 \theta = \frac{1}{3} \Rightarrow \sin \theta = \pm \frac{1}{\sqrt{3}}$$

25.
$$b\sin\theta = -c - a\cos\theta$$

$$b^2(1-\cos 2\theta) = c^2 + a^2\cos 2\theta - 2ac\cos \theta$$

$$\Rightarrow (a^2 + b^2)\cos 2\theta - 2ac\cos \theta + (c^2 - b^2) = 0$$

$$\cos \alpha \cdot \cos \beta = \frac{c^2 - b^2}{a^2 + b^2}$$

$$a^2(1-\sin 2\theta) = c^2 + b^2\sin 2\theta - 2bc\sin \theta$$

$$(a^2 + b^2)\sin 2\theta - 2bc\sin \theta + (c^2 - a^2) = 0$$

$$\sin\alpha \cdot \sin\beta = \frac{c^2 - a^2}{a^2 + b^2} \qquad \dots (2)$$

...(1)

$$\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta = \frac{a^2 - b^2}{a^2 + b^2}$$

Exercise-2: One or More than One Answer is/are Correct

1. $2\cos^2\theta + 2\sqrt{2}\cos\theta - 3 = 0$

$$(\sqrt{2}\cos\theta + 1)^2 = 4 \implies \cos\theta = \frac{1}{\sqrt{2}} \text{ or } \frac{-3}{\sqrt{2}} \text{ (Not possible)}$$

3. $4\sin 3x + 5 \ge 4\cos 2x + 5\sin x$

$$\Rightarrow (\sin x - 1)(4\sin x + 1)^2 \le 0 \ \forall \ x \in R$$

4. $4\cos x(2-3\sin^2 x) + \cos 2x + 1 = 0$

$$\cos x (3\cos x + 2)(2\cos x - 1) = 0$$

Least difference =
$$\frac{\pi}{6}$$

5. $\cos x \cos 6x = -1$

Case-1: $\cos x = 1$ and $\cos 6x = -1$

Not possible

Case-2: $\cos 6x = 1$ and $\cos x = -1$

$$\Rightarrow \qquad x = (2n-1) \, \pi, \ (n \in I)$$

7.
$$2k = \sin^2 2x - 2\sin 2x - 2$$

Let $\sin 2x = t$ $t \in [-1, 1]$

$$2k = t^2 - 2t - 2 \quad \Rightarrow \quad k \in \left[-\frac{3}{2}, \frac{1}{2} \right]$$

8.
$$f(\theta) = \left(\cos\theta - \cos\frac{\pi}{8}\right) \left(\cos\theta - \cos\frac{3\pi}{8}\right) \left(\cos\theta - \cos\frac{5\pi}{8}\right) \left(\cos\theta - \cos\frac{7\pi}{8}\right) = \cos^4\theta - \cos^2\theta + \frac{1}{8}$$

9.
$$\frac{4\sin^2 x \cos^2 x + 4\sin^4 x - 4\sin^2 x \cos^2 x}{4\cos^2 x - 4\sin^2 x \cos^2 x} = \tan^4 x = \frac{1}{9}$$

$$\Rightarrow \qquad \tan x = \pm \frac{1}{\sqrt{3}}$$

10.
$$\tan \theta (1 - \sin^2 \theta) + \cot \theta (1 - \cos^2 \theta) + 1 + \sin 2\theta = 0 \Rightarrow \sin 2\theta = -\frac{1}{2}$$

11.
$$2\left(\frac{1}{2}\sin\theta + \frac{\sqrt{3}}{2}\cos\theta\right) = -(x-3)^2 - 2$$

Solution of Advanced Problems in Mathematics for JEE

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

www.jeebooks.in

1.
$$h(x) = f^2(x) + g^2(x) = 2 + 2\sin 4x$$

$$n(x) = \int (x) + g(x) = 2 + 2\sin x$$

$$\Rightarrow 8\cos 4x \ge 0$$

$$\Rightarrow \cos 4x \ge 0$$

Longest interval =
$$\frac{\pi}{4}$$

2.
$$2 + 2 \sin 4x = 4$$

$$\Rightarrow$$
 $\sin 4x = 1$

$$\Rightarrow \qquad x = (4n+1)\frac{\pi}{8}$$

3.
$$\sin 3x + \cos x = \cos 3x + \sin x$$

$$\Rightarrow$$
 $\sin 3x - \sin x = \cos 3x - \cos x$

$$\Rightarrow$$
 $2 \sin x \cos 2x = -2 \sin 2x \sin x$

$$\Rightarrow \sin x = 0$$

$$\sin x = 0 \qquad \text{or} \quad \tan 2x = -1$$

$$\Rightarrow x = 0, \pi \quad \text{or} \quad x = \frac{3\pi}{8}, \frac{7\pi}{8}$$

Exercise-4: Matching Type Problems

1. (A)
$$\cos^2 x = \left(\frac{1}{5} - \sin x\right)^2$$

$$\Rightarrow (5\sin x - 4)(5\sin x + 3) = 0$$

$$\Rightarrow \qquad \sin x = \frac{4}{5} \quad \text{or} \quad -\frac{3}{5}$$

(B)
$$\cot \frac{\theta}{2} = 1 + \cot \theta$$

$$\Rightarrow 2\cos^2\frac{\theta}{2} = \cos\theta + \sin\theta$$

$$\Rightarrow$$
 $\sin \theta = 1 \Rightarrow \theta = -\frac{3\pi}{2}, \frac{\pi}{2}$

(C)
$$f(x) = -\sin^4 x + 8\sin^2 x + 2$$

$$\Rightarrow f(x) \in [2,9]$$

(D)
$$\log_2 \frac{(2x^2 + 5x + 27)}{(2x - 1)^2} \ge 0$$
 $\left(x > \frac{1}{2}\right)$

$$\Rightarrow$$
 $2x^2-9x-26 \le 0$

Irigonometric Equations

$$\Rightarrow \qquad -2 \le x \le \frac{13}{2}$$

2. (A) $\sin x = 1$, $\cos y = 1$ or $\sin x = -1$, $\cos y = -1$

(B)
$$f'(x) = \cos x + \sin x - K$$

 $\Rightarrow k \ge \sqrt{2}$

(C)
$$|x^2 - 1| \le 1$$
 and $|2x^2 - 5| \le 1$

$$\Rightarrow x^2 = 2$$

(D) $\sin x + \sin y = \sin(x + y)$

$$\Rightarrow 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x+y}{2}\right)$$

$$\Rightarrow$$
 $\sin\left(\frac{x+y}{2}\right) = 0$ or $\cos\left(\frac{x-y}{2}\right) = \cos\left(\frac{x+y}{2}\right)$

$$\Rightarrow$$
 $x + y = 2n\pi$ or $x = \frac{n\pi}{2}$, $y = \frac{n\pi}{2}$

if
$$x = 0, y = \pm 1$$

if
$$x = \frac{1}{2}$$
, $y = -\frac{1}{2}$

if
$$x = -\frac{1}{2}$$
, $y = \frac{1}{2}$

if
$$y=0, x=\pm 1$$

Exercise-5: Subjective Type Problems

1. Let $\sin x - 1 = a, \cos x - 1 = b, \sin x = c$

$$\Rightarrow$$
 $a^3 + b^3 + c^3 = (a + b + c)^3$

$$\Rightarrow$$
 $a+b=0$ or $b+c=0$ or $c+a=0$

 $\sin x + \cos x = 2$ or $\sin x + \cos x = 1$ or $\sin x = \frac{1}{2}$

$$\Rightarrow$$
 Total solution = 5

2. $\sin y - 2014 \cos y = 1$

$$\Rightarrow$$
 $y = \frac{\pi}{2}$

3.
$$\frac{2\sin 6x}{\sin x - 1} < 0$$

$$\Rightarrow \sin 6x > 0$$

$$\Rightarrow x \in \left(0, \frac{\pi}{6}\right) \cup \left(\frac{\pi}{3}, \frac{\pi}{2}\right)$$

325

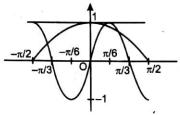
$$1 + \tan^2 x - 2\sqrt{2} \tan x \le 0$$

$$\Rightarrow \qquad x \in \left[\frac{\pi}{8}, \frac{3\pi}{8}\right] \Rightarrow x \in \left[\frac{\pi}{8}, \frac{\pi}{6}\right) \cup \left(\frac{\pi}{8}, \frac{3\pi}{8}\right]$$

4. $\sin^4 x - 4\sin^2 x + (2+k) = 0$

Let
$$\sin^2 x = t$$
 $t \in [0, 1]$
 $t^2 - 4t + (2 + k) = 0$
 $f(0) f(1) \le 0$
 $(k+2)(k-1) \le 0 \implies -2 \le k \le 1$

5.



6.
$$2\sin^2 x + \sin^2 2x = 2$$

 $2\sin^4 x - 3\sin^2 x + 1 = 0 \Rightarrow (2\sin^2 x - 1)(\sin^2 x - 1) = 0$
 $\sin 2x + \cos 2x = \tan x$
 $2\tan x + 1 - \tan^2 x = \tan x(1 + \tan^2 x)$
 $\Rightarrow \tan^3 x + \tan^2 x - \tan x - 1 = 0 \Rightarrow (1 + \tan x)(\tan^2 x - 1) = 0$
 $2\cos^2 x + \sin x \le 2$
 $2\sin^2 x - \sin x \ge 0$
 $\sin x(2\sin x - 1) \ge 0$

7.
$$(3 \cot \theta + 1)(\cot \theta + 3) = 0$$

 $\cot \theta = -\frac{1}{3} \text{ and } \cot \theta = -3$

$$\theta = \alpha, \pi + \alpha$$
 $\theta = \frac{\pi}{2} - \alpha, \pi + \frac{\pi}{2} - \alpha$

8.
$$(8\cos 4\theta - 3)(\cot \theta - \tan \theta)^2 = 12$$

$$8(2\cos^2 2\theta - 1) - 3\left(\frac{4\cos^2 2\theta}{\sin^2 2\theta}\right) = 12$$

$$16\cos^4 2\theta - 8\cos^2 2\theta - 3 = 0$$

$$\Rightarrow (4\cos^2 2\theta - 3)(4\cos^2 2\theta + 1) = 0$$

$$\Rightarrow \qquad \cos 2\theta = \pm \frac{\sqrt{3}}{2}$$

Prigonometric Equations

9.
$$2\sin^2 x + 4\sin^2 x \cos^2 x = 2$$

 $2\sin^4 x - 3\sin^2 x + 1 = 0 \implies (\sin^2 x - 1)(2\sin^2 x - 1) = 0$
 $\sin x = \pm \frac{1}{\sqrt{2}}, \pm 1$
 $\sin 2x + \cos 2x = \tan x$
 $\frac{2\tan x}{1 + \tan^2 x} + \frac{1 - \tan^2 x}{1 + \tan^2 x} = \tan x$
 $\Rightarrow \tan^3 x + \tan^2 x - \tan x - 1 = 0$
 $(\tan x + 1)^2 (\tan x - 1) = 0$
 $2\cos^2 x + \sin x \le 2$
 $2\sin^2 x - \sin x \ge 0$
 $\sin x(2\sin x - 1) \ge 0$

Chapter 24 - Solution of Triangles

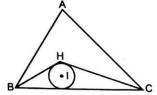
327

SOLUTION OF TRIANGLES

Exercise-1: Single Choice Problems

1.
$$\frac{\cot A + \cot B}{\cot C} = \frac{\cos A \sin B + \cos B \sin A}{(\sin A \sin B) \frac{\cos C}{\sin C}} = \frac{\sin^2 C}{(\sin A \sin B) \cos C} = \frac{c^2}{ab \cdot \frac{a^2 + b^2 - c^2}{2ab}}$$
$$= \frac{2c^2}{\left(\frac{17}{9} - 1\right)c^2} = \frac{18}{8}$$

2.
$$\angle BIC = \frac{\pi}{2} + \left(\frac{\pi - A}{2}\right)$$
$$= \frac{\pi}{2} + \left(\frac{B + C}{2}\right)$$



3.
$$\frac{1}{64}[(2R\cos A)^2 + a^2][(2R\cos B)^2 + b^2][(2R\cos C)^2 + c^2]$$

$$\frac{1}{64}[(2R\cos A)^2 + (2R\sin A)^2][(2R\cos B)^2 + (2R\sin B)^2][(2R\cos C)^2 + (2R\sin C)^2]$$

$$= R^6$$

4.
$$B = 60^{\circ}$$

 $2\sin^2 B = 3\sin^2 C \implies \sin C = \frac{1}{\sqrt{2}} \implies C = 45^{\circ}$

5.
$$\tan \frac{A}{2} \tan \frac{C}{2} = \frac{1}{3}$$

$$\frac{s-b}{s} = \frac{1}{3} \Rightarrow b = \frac{2}{3} s \Rightarrow \frac{a+c}{2} = b \Rightarrow b \ge 2 \qquad (A.M. \ge G.M.)$$

6.
$$\cos A \cos B \cos C \sum \frac{a}{\cos A} = 2R \cos A \cos B \cos C \sum \tan A = 2R \cos A \cdot \cos B \cdot \cos C \cdot \prod (\tan A)$$

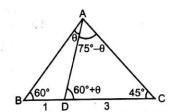
Solution of Triangles

$$= 2R\cos A \cdot \cos B \cdot \cos C \cdot \frac{\sin A \sin B \sin C}{\cos A \cos B \cos C} = 2R \sin A \sin B \sin C$$

8. In
$$\triangle BAD$$
,
$$\frac{BD}{\sin \theta} = \frac{AD}{\sin 60^{\circ}}$$
In $\triangle CAD$,
$$\frac{CD}{\sin(75^{\circ}-\theta)} = \frac{AD}{\sin 45^{\circ}}$$

$$\Rightarrow \frac{BD}{\sin \theta} \sin 60^{\circ} = \frac{CD \sin 45^{\circ}}{\sin(75^{\circ}-\theta)}$$

$$\Rightarrow \frac{\sin \theta}{\sin(75^{\circ}-\theta)} = \frac{BD}{CD} \frac{\sin 60^{\circ}}{\sin 45^{\circ}} = \frac{1}{\sqrt{6}}$$



9. Length of angle bisector $AD = \frac{2bc}{b+c} \cos \frac{A}{2}$ Length of angle bisector $BE = \frac{2ac}{a+c} \cos \frac{B}{2}$ Length of angle bisector $CF = \frac{2ab}{a+b} \cos \frac{C}{2}$

H.M. =
$$\frac{3}{\frac{b+c}{2bc} + \frac{a+c}{2ac} + \frac{a+b}{2ab}} = \frac{3}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}}$$

10. 2b = a + c

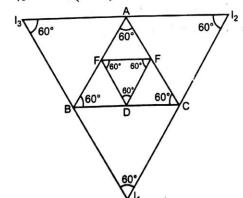
 $2\sin B = \sin A + \sin C$

$$2\left(2\sin\frac{B}{2}\cos\frac{B}{2}\right) = 2\sin\left(\frac{A+C}{2}\right)\cos\left(\frac{A-C}{2}\right) \Rightarrow \sin\frac{B}{2} = \frac{1}{2\sqrt{2}}$$

11.
$$2\cos\left(\frac{B-C}{2}\right) = \frac{b+c}{a} = \frac{\sin B + \sin C}{\sin A}$$

$$\Rightarrow \qquad \sin\frac{A}{2} = \frac{1}{2} \qquad \Rightarrow \qquad \angle A = 60^{\circ}$$

12.
$$\cos A = \frac{4+c^2-1}{4c} = \frac{1}{4}\left(c+\frac{3}{c}\right) \ge \frac{\sqrt{3}}{2}$$



13.

330

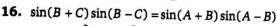
If $\triangle ABC$ is an equilateral triangle then $\triangle DEF$ and $\triangle I_1I_2I_3$ are also equilateral triangle Side of $\triangle DEF = 1$ unit $\Rightarrow Ar(\triangle DEF) = \frac{\sqrt{3}}{4}$

www.jeebooks.in

$$AD = \frac{2x \cdot \frac{1}{x}}{x + \frac{1}{x}} \cos \frac{\pi}{3} = \frac{1}{x + \frac{1}{x}}$$

$$AD_{\text{max}} = \frac{1}{2}$$

15.
$$r = \frac{\sqrt{3}a}{6}$$
, $R = \frac{\sqrt{3}a}{3}$, $r_1 = \frac{\sqrt{3}a}{2} \Rightarrow r, R, r_1$ are in A.P.



$$\sin^2 B - \sin^2 C = \sin^2 A - \sin^2 B$$

$$\Rightarrow 2\sin^2 B = \sin^2 A + \sin^2 C$$

$$2b^2 = a^2 + c^2$$

(Using sine rule)

17.
$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} = \tan(\pi - C)$$

$$\Rightarrow \qquad \tan C = \frac{7}{4} \Rightarrow \sin C = \frac{7}{\sqrt{65}}$$

Using sine rule

$$R = \frac{c}{2\sin C} = \frac{65}{14}$$

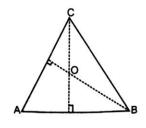
18.
$$\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c}$$

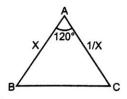
$$\frac{b^2 + c^2 - a^2}{2abc} + \frac{a^2 + c^2 - b^2}{2abc} + \frac{a^2 + b^2 - c^2}{2abc} = \frac{a^2 + b^2 + c^2}{2abc} = \frac{(a + b + c)^2 - 2(ab + bc + ac)}{2abc}$$

19.
$$\frac{a+c}{b} + \frac{b+c}{a} = \frac{a^2 + b^2 + ac + bc}{ab} = \frac{c^2(a+b+c)}{abc} = \frac{c^2(2s)}{4R\Delta} = \frac{2R}{r} = \frac{c}{r}$$

20.
$$a^2(\sin B - 1) = b^2 + c^2 - a^2 = 2bc\cos A \Rightarrow \cos A < 0$$

21.
$$2R' = \frac{a}{\sin(\pi - A)} = \frac{a}{\sin A} = 2R$$





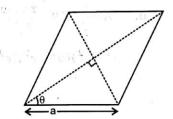
Solution of Triangles 331

22.
$$a = \sqrt{d_1 d_2}$$

$$\frac{d_1}{2} = a \cos \theta, \frac{d_2}{2} = a \sin \theta$$

$$1 = 4 \sin \theta \cos \theta$$

$$\Rightarrow \sin 2\theta = \frac{1}{2} \Rightarrow 2\theta = 30^{\circ}$$



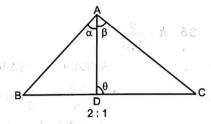
23. : $(m+n)\cot\theta = m\cot\alpha - n\cot\beta$

$$\therefore (2+1)\cot\theta = 2\cot\alpha - \cot\beta$$

Put
$$\cot \theta = \frac{1}{3}$$
, $\cot \beta = \cot \left(\frac{\pi}{2} - \alpha\right) = \tan \alpha$

We have $1 = \frac{2}{\tan \alpha} - \tan \alpha \implies \tan^2 \alpha + \tan \alpha - 2 = 0$

$$\therefore \tan \alpha = 1 \qquad \therefore \alpha = 45^{\circ}$$



24. Circumradius of equilateral Δ , $R = \frac{l}{2 \sin 60^{\circ}} = \frac{l}{\sqrt{3}}$

Diagonal of square = $2R \Rightarrow a\sqrt{2} = 2R$ $\therefore a = R\sqrt{2} = \frac{l\sqrt{2}}{\sqrt{3}}$ \therefore Area of square = $\frac{2l^2}{3}$

25.
$$\cos \theta = \frac{2^2 + (\sqrt{6})^2 - (\sqrt{3} + 1)^2}{4\sqrt{6}} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$$

26. If a, b, c are in A.P.

$$\Rightarrow 2\sin B = \sin A + \sin C \Rightarrow \sin \frac{B}{2} = \frac{1}{4}$$

$$\frac{s}{r} = \frac{6\cos\frac{B}{2}}{1 - 2\sin\frac{B}{2}} = 3\sqrt{15}$$

27.
$$\cos(A-B) = \frac{1-\tan^2\left(\frac{A-B}{2}\right)}{1+\tan^2\left(\frac{A-B}{2}\right)} = \frac{31}{32} \Rightarrow \tan\left(\frac{A-B}{2}\right) = \frac{1}{3\sqrt{7}}$$

$$\tan\left(\frac{A-B}{2}\right) = \frac{a-b}{a+b}\cot\frac{C}{2} \implies \cos C = \frac{1}{8}$$
$$\cos C = \frac{a^2+b^2-c^2}{2ab} = \frac{1}{8} \implies c = 6$$

28.
$$(b+c)\cos(B+C) + (c+a)\cos(C+A) + (a+b)\cos(A+B)$$

= $-[(b\cos A + a\cos B) + (c\cos A + a\cos C) + (c\cos B + b\cos C)] = -[a+b+c] = -30$

30.
$$\angle A = \frac{\pi}{7}, \angle B = \frac{2\pi}{7}, \angle C = \frac{4\pi}{7}$$

$$(a^2 - b^2)(b^2 - c^2)(c^2 - a^2) = a^2 b^2 c^2 \left(1 - \frac{b^2}{a^2}\right) \left(1 - \frac{c^2}{b^2}\right) \left(1 - \frac{a^2}{c^2}\right)$$

$$= a^2 b^2 c^2 \left(1 - \frac{\sin^2 \frac{2\pi}{7}}{\sin^2 \frac{\pi}{7}}\right) \left(1 - \frac{\sin^2 \frac{\pi}{7}}{\sin^2 \frac{2\pi}{7}}\right) \left(1 - \frac{\sin^2 \frac{\pi}{7}}{\sin^2 \frac{4\pi}{7}}\right) = a^2 b^2 c^2$$

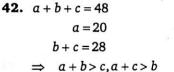
36.
$$h = \frac{a}{2\sqrt{3}}$$

$$Ar(\Delta ABC) = Ar(\Delta APB) + Ar(\Delta BPC) + Ar(\Delta APC)$$

$$\frac{\sqrt{3}}{4}a^2 = \frac{1}{2}a(h + h_1 + h_2) \implies h_1 + h_2 = \frac{a}{\sqrt{3}}$$

37.
$$\cos 60^\circ = \frac{6^2 + 7^2 - x^2}{2 \times 6 \times 7} \Rightarrow x = \sqrt{43}$$

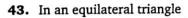
$$39. CD = \frac{2ab}{a+b}\cos\frac{\pi}{3}$$
$$= \frac{ab}{a+b}$$



$$\Rightarrow 4+b>c, 4+c>b$$

$$\Rightarrow 20+b>28-b, 20+c>28-c$$

$$\Rightarrow b>4,c>4$$



$$a = b = c$$

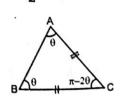
44.
$$\frac{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}{4b^2c^2}$$

$$= \frac{2s(2s-2a)(2s-2b)(2s-2c)}{4b^2c^2} = 4\left(\frac{2(s-a)}{bc}\right)\left(\frac{(s-b)(s-c)}{bc}\right) = 4\sin^2\frac{A}{2}\cos^2\frac{A}{2} = \sin^2 A$$

45.
$$R = 4r$$

$$R = 4\left(4R\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\right)$$

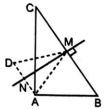
$$1 = 16\sin^2\frac{\theta}{2}\cdot\cos\theta = 8(1-\cos\theta)\cos\theta$$



Solution of Triangles

33

46. $\triangle DMN \cong \triangle AMN \Rightarrow DM = AM$



47.
$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = -(a^3 + b^2 + c^3 - 3abc)$$

$$=-(a+b+c)(a^2+b^2+c^2-ab-bc-ac)$$

48.
$$A = \frac{\pi}{7}$$
, $B = \frac{2\pi}{7}$, $C = \frac{4\pi}{7}$

$$\left(1-\frac{b^2}{a^2}\right)\left(1-\frac{c^2}{b^2}\right)\left(1-\frac{a^2}{c^2}\right) = \lambda$$

$$\left(1 - \frac{\sin^2 \frac{2\pi}{7}}{\sin^2 \frac{\pi}{7}}\right) \left(1 - \frac{\sin^2 \frac{4\pi}{7}}{\sin^2 \frac{2\pi}{7}}\right) \left(1 - \frac{\sin^2 \frac{\pi}{7}}{\sin^2 \frac{4\pi}{7}}\right) = \lambda$$

$$\left(\frac{\sin^2\frac{\pi}{7} - \sin^2\frac{2\pi}{7}}{\sin^2\frac{\pi}{7}}\right) \left(\frac{\sin^2\frac{2\pi}{7} - \sin^2\frac{4\pi}{7}}{\sin^2\frac{2\pi}{7}}\right) \left(\frac{\sin^2\frac{4\pi}{7} - \sin^2\frac{\pi}{7}}{\sin^2\frac{4\pi}{7}}\right) = \lambda$$

$$\Rightarrow \lambda = 1(\sin^2 A - \sin^2 B = \sin(A - B) \cdot \sin(A + B))$$

49.
$$r_1 = \frac{\Delta}{s-a}$$
, $r_2 = \frac{\Delta}{s-b}$, $r_3 = \frac{\Delta}{s-c}$

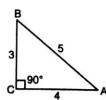
$$\frac{r_1 r_2 r_3}{r^3} = \frac{s^3}{(s-a)(s-b)(s-c)}$$

$$\frac{\frac{s-a}{s} + \frac{s-b}{s} + \frac{s-c}{s}}{3} \ge \left(\frac{s-a}{s}\right) \left(\frac{s-b}{s}\right) \left(\frac{s-c}{s}\right)$$

50.
$$\sin A = \frac{3}{5}$$

$$\sin B = \frac{4}{5}$$

$$\sin C = 1$$



51.
$$\frac{r_1 + r_2}{1 + \cos C} = \frac{4R \sin \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} + 4R \cos \frac{A}{2} \sin \frac{B}{2} \cos \frac{C}{2}}{2 \cos^2 \frac{C}{2}}$$
$$= \frac{2R \left(\sin \frac{A}{2} \cos \frac{B}{2} + \cos \frac{A}{2} \sin \frac{B}{2} \right)}{\cos \frac{C}{2}} = 2R$$
53.
$$\cos \theta = \frac{\sin^2 \alpha + \cos^2 \alpha - (1 + \sin \alpha \cos \alpha)}{2 \sin \alpha \cos \alpha} = \frac{1}{2}$$

53.
$$\cos \theta = \frac{\sin^2 \alpha + \cos^2 \alpha - (1 + \sin \alpha \cos \alpha)}{2 \sin \alpha \cos \alpha} = \frac{1}{2}$$

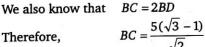
55. Since we need to compute the radius of an escribed circle, we would be needing the length of all the sides of the given triangle ABC.

From the question, we already know AB = AC = 5.

For finding the length of side BC, let us draw a line AD which is the bisector of angle BAC, as shown in the figure below.

$$\angle BAD = \angle DAC = 15^{\circ}$$
Therefore, $\sin 15^{\circ} = \frac{BD}{AB} = \frac{BD}{5}$ and $\sin 15^{\circ} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$

 $BD = 5 \sin 15^\circ = \frac{5(\sqrt{3} - 1)}{2\sqrt{2}}$ Therefore,



Now, we know that the required radius

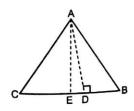
$$r_{1} = s \tan\left(\frac{A}{2}\right) = \left(\frac{AB + BC + CA}{2}\right) \tan\left(\frac{A}{2}\right)$$

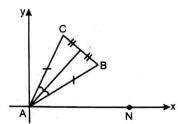
$$= \left(\frac{5 + \frac{5(\sqrt{3} - 1)}{\sqrt{2}} + 5}{2}\right) (\tan 15^{\circ}) = \left(\frac{10\sqrt{2} + 5\sqrt{3} - 5}{2\sqrt{2}}\right) (2 - \sqrt{3})$$

56.
$$ED = BE - BD = \frac{a}{2} - C \cos B$$

$$= \frac{a}{2} - C \left(\frac{a^2 + c^2 - b^2}{2ac} \right)$$

$$= \frac{b^2 - c^2}{2a}$$





Solution of Triangles

iolution

335

57. $2R(\sin A \cos B \cos C + \cos A \sin B \cos C + \cos A \cos B \sin C)$ = $2R(\sin(A+B)\cos C + \cos A \cos B \sin C)$ = $R(2\sin A \sin B \sin C) = \frac{abc}{4R^2} = \frac{\Delta}{R} = \frac{rs}{R}$

58. In
$$\triangle AFE$$
, $\frac{b\cos A}{\sin B} = 2R_1$
 $\Rightarrow R_1 = R\cos A$

Similarly, $R_2 = R\cos B$

and $R_3 = R\cos C$

$$R_1 + R_2 + R_3 = R(\cos A + \cos B + \cos C) \le \frac{3}{2}R$$

59. $Ar(\Delta ABC) = Ar(\Delta OAB) + Ar(\Delta OBC) + Ar(\Delta OAC)$

$$8 = \frac{1}{2}R^{2}(\sin\alpha + \sin\beta + \sin\gamma)$$

$$\Rightarrow \qquad \sin\alpha + \sin\beta + \sin\gamma = \frac{4\pi}{5}$$

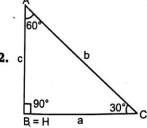
 $\left(\because R^2 = \frac{20}{\pi}\right)$

Exercise-2: One or More than One Answer is/are Correct

1. $x^2 - r(r_1r_2 + r_2r_3 + r_1r_3)x + (r_1r_2r_3 - 1) = 0$

$$x^{2} - (r_{1}r_{2}r_{3})x + (r_{1}r_{2}r_{3} - 1) = 0$$

 \Rightarrow Roots are 1 and $r_1r_2r_3 - 1$



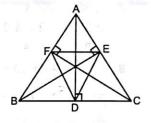
3. $R = 2r, r = (s - a) \tan 30^\circ = \frac{s}{3} \tan 30^\circ \Rightarrow s \text{ is irrational} \Rightarrow \Delta \text{ is irrational}$

$$r_1 = s \tan 30^\circ = 3r$$
 (rational)

4.
$$D+E+F=\frac{\pi}{2}$$

5.
$$a = 4, b = 8, \angle C = 60^{\circ}$$

$$\cos C = \frac{1}{2} = \frac{a^2 + b^2 - c^2}{2ab} \Rightarrow c = 4\sqrt{3}$$



Advanced Problems in Mathematics for JEE

6. If
$$\frac{r}{r_1} = \frac{r_2}{r_3} \Rightarrow \frac{s-a}{s} = \frac{s-a}{s-1}$$

$$\Rightarrow a^2 + b^2 = c^2$$

$$\Rightarrow \angle C = 90^\circ$$

7.
$$\angle BOC = 2 \angle A$$

 $\angle BIC = \pi/2 + A/2$
 $\angle BHC = \pi - A$

8.
$$\sqrt{3}x^2 - 4x + \sqrt{3} < 0$$

 $\Rightarrow (\sqrt{3}x - 1)(x - \sqrt{3}) < 0 \Rightarrow \frac{1}{\sqrt{3}} < x < \sqrt{3}$
 $30^\circ < A, B < 60^\circ \Rightarrow 60^\circ < C < 120^\circ$

$$9. \cos 2\theta = 2\cos^2 \theta - 1$$

$$\frac{1}{\sqrt{2}} = 2\cos^2\frac{\pi}{8} - 1$$

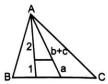
$$2\cos^2\frac{\pi}{8} = 1 + \frac{1}{\sqrt{2}}$$

$$\cos^2\frac{\pi}{8} = \frac{\sqrt{2} + 1}{2\sqrt{2}}$$

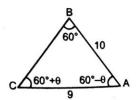
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$
 then solve it

11.
$$(3 \sin A + 4 \cos B)^2 + (4 \sin B + 3 \cos A)^2 = 37$$
; $9 + 16 + 24 \sin(A + B) = 37$

12.
$$\frac{b+c}{a} = \frac{2}{1}$$



13.
$$\angle A, \angle B, \angle C$$
 A.P. $\Rightarrow \angle B = 60^{\circ}$
 $\cos 60^{\circ} = \frac{a^2 + 10^2 - 9^2}{20a}$



14.
$$\Delta = \frac{1}{2} ab \sin C$$

$$\frac{a+b}{2} \ge \sqrt{ab} \implies \frac{\sin A + \sin B}{2} \ge \sqrt{\sin A \times \sin B}$$

Solution of Triangles

337

15. $3\cos A = \cos(B - C) - \cos(B + C) \Rightarrow 2\cos A = \cos B - C) = -\cos(A + 2C)$ 2 = $(\tan A \sin 2C - \cos 2C)$

Exercise-3 : Comprehension Type Problems

Paragraph for Question Nos. 2

2.
$$r' = 4r\sin\left(\frac{\pi}{4} - \frac{A}{4}\right)\sin\left(\frac{\pi}{4} - \frac{B}{4}\right)\sin\left(\frac{\pi}{4} - \frac{C}{4}\right)$$

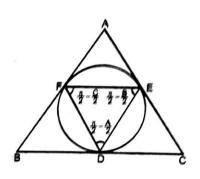
$$\frac{r'}{r} = 4\sin\left(\frac{\pi}{4} - \frac{A}{4}\right)\sin\left(\frac{\pi}{4} - \frac{B}{4}\right)\sin\left(\frac{\pi}{4} - \frac{C}{4}\right)$$

$$= \sin\frac{A}{2} + \sin\frac{B}{2} + \sin\frac{C}{2} - 1$$

$$r'_{1} = 4r\sin\left(\frac{\pi}{4} - \frac{A}{4}\right)\cos\left(\frac{\pi}{4} - \frac{B}{4}\right)\cos\left(\frac{\pi}{4} - \frac{C}{4}\right)$$

$$\frac{r'_{1}}{r} = 4\sin\left(\frac{\pi}{4} - \frac{A}{4}\right)\cos\left(\frac{\pi}{4} - \frac{B}{4}\right)\cos\left(\frac{\pi}{4} - \frac{C}{4}\right)$$

$$= 1 - \sin\frac{A}{2} + \sin\frac{B}{2} + \sin\frac{C}{2}$$

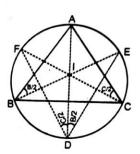


Paragraph for Question Nos. 3 to 4

3. $Ar(\Delta DEF)$

$$=2R^{2} \sin\left(\frac{\pi}{2} - \frac{A}{2}\right) \sin\left(\frac{\pi}{2} - \frac{B}{2}\right) \sin\left(\frac{\pi}{2} - \frac{C}{2}\right)$$
$$=2R^{2} \cos\frac{A}{2} \cos\frac{B}{2} \cos\frac{C}{2}$$

4.
$$\frac{Ar(\Delta ABC)}{Ar(\Delta DEF)} = \frac{2R^2 \sin A \sin B \sin C}{2R^2 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}} = 8 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \le 1$$



Paragraph for Question Nos. 5 to 6

Sol. $c/2 = R \implies c = 82$

Paragraph for Question Nos. 7 to 8

Sol.
$$\angle A_1 = \frac{\pi}{2} - \frac{A}{2}$$

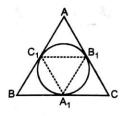
$$\angle A_2 = \frac{\pi}{2} - \frac{1}{2}(\angle A_1) = \frac{\pi}{2} - \frac{1}{2}\left(\frac{\pi}{2} - \frac{A}{2}\right)$$

$$= \frac{\pi}{4} + \frac{A}{4}$$

$$\angle A_3 = \frac{\pi}{2} - \frac{1}{2}(\angle A_2)$$

$$= \frac{3\pi}{8} - \frac{A}{8}$$

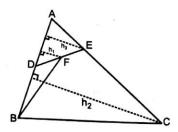
$$\angle A_n = \frac{\pi}{2}\left(1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots\right) + \frac{(-1)^n A}{2^n}$$



Paragraph for Question Nos. 9 to 10

Sol.
$$\frac{\Delta_1}{\Delta} = \frac{\frac{1}{2} \times BD \times h_1}{\frac{1}{2} \times AB \times h_2} = (1 - x) \frac{h_1}{h_2} \times \frac{h_3}{h_3} = (1 - x) yz$$

$$\frac{\Delta_2}{\Delta} = \frac{\frac{1}{2} \times EC \times h_4}{\frac{1}{2} \times AC \times h_5} = x(1 - y)(1 - z)$$



Paragraph for Question Nos. 11 to 13

Sol.
$$\log\left(1+\frac{c}{a}\right) + \log a - \log b = \log 2$$

 $\Rightarrow a+c=2b$
 $(c-a)x^2 + 2bx + (a+c) = 0$ has equal roots, then
 $a^2 + b^2 = c^2$

Paragraph for Question Nos. 14 to 16

Sol.
$$\frac{BE}{\sin C} = \frac{ED}{\sin \frac{A}{2}}, \frac{EC}{\sin B} = \frac{ED}{\sin \frac{A}{2}}$$

Solution of Triangles

339

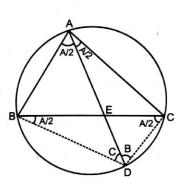
$$\Rightarrow BE + EC = a = \frac{ED}{\sin \frac{A}{2}} (\sin B + \sin C)$$

$$\Rightarrow ED = \frac{a\sin\frac{A}{2} \times 2R}{b+c}$$

$$l_a = \frac{2bc}{b+c} \cos \frac{A}{2}$$

$$\frac{2bc}{b+c} \cos \frac{A}{2} + \frac{a \sin \frac{A}{2} \times 2R}{b+c}$$

$$\Rightarrow l_a = \frac{2\sin B \sin C}{2\sin B \sin C + 2\sin^2 \frac{A}{2}} = \frac{\sin B \sin C}{\sin^2 \left(B + \frac{A}{2}\right)}$$



Exercise-4: Matching Type Problems

2. (A)
$$3^0 \{2^0 + 2^{-1} + 2^{-2} \dots \infty\} = 1\{2\}$$

$$3^{-1}\{2^0+2^{-1}+2^{-2},\ldots,\infty\}=\frac{1}{3}\{2\}$$

$$3^{-2}\{2^0+2^{-1}+2^{-2},\ldots,\infty\}=\frac{1}{3}\{2\}$$

Hence,
$$\frac{2 \times 1}{1 - \frac{1}{2}} = 3$$

(B)
$$b^2 + c^2 - a^2 = 2bc \cos A = 54$$

$$bc \cos A = 27 = a^3 \implies a = 3$$

$$\frac{b^2 + c^2}{9} = \frac{63}{9} = 7$$

(C) Circumcentre of $\triangle ABC$ is (-1, 0).

Point A lie on the circle
$$(x + 1)^2 + y^2 = 4 \implies x^2 + y^2 + 2x - 3 = 0$$

(D) $(\cos\theta\sin\theta + 6) = 6(\sin\theta - \cos\theta) \Rightarrow 36 + \sin^2\theta\cos^2\theta + 12\sin\theta\cos\theta = 36(1 - 2\sin\theta\cos\theta)$ Let $\sin\theta\cos\theta = t$

Solution of Advanced Problems in Mathematics for JEE

$$t^{2} + 84t = 0 \Rightarrow t = 0$$
If $\sin \theta = 0 \Rightarrow \cos \theta = -1 \Rightarrow \theta = \pi$
If $\cos \theta = 0 \Rightarrow \sin \theta = 1 \Rightarrow \theta = \frac{\pi}{2}$

3.
$$r_1 r_2 + r_3 r_2 + r_1 r_3 = S^2 \implies S = 42$$

$$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} = \frac{1}{r} \implies r = 8$$

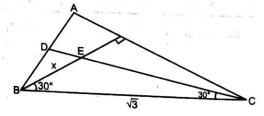
$$r = \frac{\Delta}{S} \implies \Delta = 336$$

4. Use
$$r = \frac{\Delta}{s}$$
, $r_1 = \frac{\Delta}{s-a}$, $r_2 = \frac{\Delta}{s-b}$, $r_3 = \frac{\Delta}{s-a}$
(C) $r = 4R \sin{\frac{A}{2}} \sin{\frac{B}{2}} \sin{\frac{C}{2}}$
and similarly r_1, r_2, r_3

Exercise-5: Subjective Type Problems

2.
$$\angle O_1EO_2 = 90^\circ$$
, E is the orthocentre of $\triangle O_1EO_2$

$$\frac{x}{\sin 30^\circ} = \frac{\sqrt{3}}{\sin 120^\circ}; x = 1$$



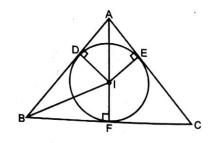
3.
$$\frac{1}{2}r(AD + AE) = 5$$

$$\frac{1}{2}r(BF + BD) = 10$$

$$\Rightarrow \frac{BF + BD}{AD + AE} = 2 \Rightarrow \frac{r\cot\frac{B}{2} + r\cot\frac{B}{2}}{A} = 2$$

$$\Rightarrow \frac{BF + BD}{AD + AE} = 2 \Rightarrow \frac{r \cot \frac{B}{2} + r \cot \frac{B}{2}}{r \cot \frac{A}{2} + r \cot \frac{A}{2}} = 2$$

Applying C and D,
$$\frac{\cos\frac{C}{2}}{\sin\frac{A-B}{2}} = 3$$



4.
$$\frac{\Delta_1 \Delta_2 \Delta_3}{\Delta^3} = \frac{(r_1 r_2 r_3)^2}{r^6} = \left(\frac{s}{s-a} \times \frac{s}{s-b} \times \frac{s}{s-c}\right)^2$$
$$\frac{(s-a) + (s-b) + (s-c)}{3} \ge [(s-a)(s-b)(s-c)]^{1/3}$$

$$\Rightarrow \frac{s^3}{(s-a)(s-b)(s-c)} \ge 27$$

Minimum value = 1

5. In
$$\triangle ABM$$
, $\frac{AB}{\sin 150^\circ} = \frac{AM}{\sin 7^\circ}$

In
$$\triangle ACM$$
, $\frac{AC}{\sin(97^{\circ}-\theta)} = \frac{AM}{\sin\theta}$

$$\Rightarrow \qquad \sin \theta = 2 \sin 7^{\circ} \sin(97^{\circ} - \theta)$$

$$\Rightarrow \qquad \sin\theta = \sin\theta - \cos(104^{\circ} - \theta)$$

$$\Rightarrow \cos(104^{\circ} - \theta) = 0$$

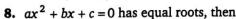
$$\Rightarrow$$
 $\theta = 14^{\circ}$

6.
$$\frac{AH}{AD} + \frac{BH}{BE} + \frac{CH}{CF} = \frac{R}{\Delta} (a\cos A + b\cos B + c\cos C) = \frac{R^2}{\Delta} (\sin 2A + \sin 2B + \sin 2C)$$
$$= \frac{4R^2}{\Delta} \sin A \sin B \sin C = \frac{bc\sin A}{\Delta} = 2$$

$$7. \frac{c}{\sin C} = \frac{AA_1}{\sin\left(B + \frac{A}{2}\right)}$$

$$AA_1 \cos \frac{A}{2} = \sin B + \sin C$$
 (: $R = 1$)

$$\Rightarrow \frac{AA_1 \cos \frac{A}{2} + BB_1 \cos \frac{B}{2} + CC_1 \cos \frac{C}{2}}{\sin A + \sin B + \sin C} = 2$$



$$b^{2} = 4ac$$

$$\frac{\sin A}{\sin C} + \frac{\sin C}{\sin A} = \frac{a}{c} + \frac{c}{a} = \frac{a^{2} + c^{2}}{ac} = \frac{b^{2} + 2ac\cos B}{ac}$$

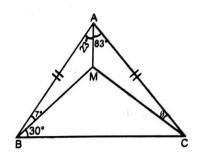
9.
$$\cot \frac{A}{2}$$
, $\cot \frac{B}{2}$, $\cot \frac{C}{2}$ is AP

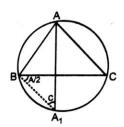
In $\triangle ABC$

$$\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{C}{2} = \cot\frac{A}{2} \cdot \cot\frac{B}{2} \cdot \cot\frac{C}{2}$$

$$\Rightarrow \cot \frac{A}{2} \cdot \cot \frac{C}{2} = 3$$

 $AM \ge GM$





...(1)

Solution of Advanced Problems in Mathematics for JEL

345

$$\frac{\cot\frac{A}{2} + \cot\frac{C}{2}}{2} \ge \sqrt{\cot\frac{A}{2} \cdot \cot\frac{C}{2}} \implies \cot\frac{B}{2} \ge \sqrt{3}$$

10.
$$(R^2 - 4Rr + 4r^2) + (4r^2 - 12r + 9) = 0$$

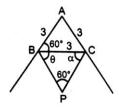
 $(R - 2r)^2 + (2r - 3)^2 = 0$
 $\Rightarrow r = \frac{3}{2}; R = 2r$

AABC is an equilateral triangle.

11. In $\triangle BCP$,

$$\frac{3}{\sin 60^{\circ}} = \frac{PC}{\sin \theta}$$

$$PC = 2\sqrt{3} \sin \theta$$



12.
$$b+c=\frac{2ab\cos C+2\sqrt{3}ab\sin C}{2b}=\frac{(a^2+b^2-c^2)+12}{2b}$$

13.
$$R = 3$$
, $\Delta = 6$
 $P_{\Delta DEF} = DE + EF + DF = R(\sin 2A + \sin 2B + \sin 2C)$
 $= 4R \sin A \sin B \sin C$
 $= 4R \left(\frac{b}{2R} \frac{c}{2R} \sin A\right) = \frac{1}{R} (2\Delta) = 4$

Chapter 25 - Inverse Trigonometric Functions

Exercise-1: Single Choice Problems

2.
$$(\cot^{-1} x) \left(\frac{\pi}{2} - \cot^{-1} x \right) + 2\cot^{-1} x - \frac{\pi}{2}\cot^{-1} x + 3\left(\frac{\pi}{2} - \tan^{-1} x \right) - 6 > 0$$

$$-(\cot^{-1} x)^{2} + 5\cot^{-1} x - 6 > 0$$

$$(\cot^{-1} x)^{2} - 5(\cot^{-1} x) + 6 < 0$$

$$(\cot^{-1} x - 3)(\cot^{-1} x - 2) < 0$$

$$2 < \cot^{-1} x < 3$$

$$\cot 3 < x < \cot 2$$

$$t^{2}(\cot^{-1}3) = 1 + 2^{2} + 1 + 2^{2}$$

(: $\cot^{-1} x$ is decreasing)

3.
$$1 + \tan^2(\tan^{-1} 2) + 1 + \cot^2(\cot^{-1} 3) = 1 + 2^2 + 1 + 3^2 = 15$$

4.
$$\sum_{n=1}^{\infty} \tan^{-1} \left(\frac{(n+1)^2 + (n+1) - ((n+1)^2 - (n+1))}{1 + (n+1)^4 - (n+1)^2} \right)$$

5.
$$\cot^{-1}(\sqrt{\cos\alpha}) - \tan^{-1}(\sqrt{\cos\alpha}) = x$$

$$\frac{\pi}{2} - 2 \tan^{-1} \sqrt{\cos \alpha} = x$$

$$\frac{\pi}{4} - \frac{x}{2} = \tan^{-1} \sqrt{\cos \alpha}$$

$$\sqrt{\cos\alpha} = \frac{1 - \tan\frac{x}{2}}{1 + \tan\frac{x}{2}}$$

$$\tan \frac{x}{2} = \frac{1 - \sqrt{\cos \alpha}}{1 + \sqrt{\cos \alpha}} \implies \sin x = \tan^2 \frac{\alpha}{2}$$

6.
$$T_n = \tan^{-1} \left(\frac{4}{4n^2 + 3} \right) = \tan^{-1} \left(\frac{1}{n^2 + (3/4)} \right) = \tan^{-1} \left(\frac{\left(n + \frac{1}{2} \right) - \left(n - \frac{1}{2} \right)}{1 + \left(n + \frac{1}{2} \right) \left(n - \frac{1}{2} \right)} \right)$$

$$T_n = \tan^{-1}\left(n + \frac{1}{2}\right) - \tan^{-1}\left(n - \frac{1}{2}\right)$$

 $S_n = \tan^{-1}\left(n + \frac{1}{2}\right) - \tan^{-1}\left(\frac{1}{2}\right) \implies S_{\infty} = \frac{\pi}{2} - \tan^{-1}\left(\frac{1}{2}\right)$

7.
$$\cos^{-1}(1-x) + m\cos^{-1}x = \frac{n\pi}{2}$$

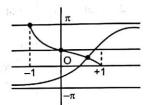
Domain
$$x \in [0, 1]$$

 $\cos^{-1}(1-x) + m\cos^{-1}x > 0$ (: $m > 0$)

There is no solution.

8.
$$2 \tan^{-1}(2x-1) = \cos^{-1} x$$

$$2x-1 \ge 0 \qquad 1 \ge x > 0$$
$$x \ge \frac{1}{2}$$



Only one solution

9. Put
$$x = 2\sin\theta$$
, $y = 3\cos\theta$

$$\frac{x}{2\sqrt{2}} + \frac{y}{3\sqrt{2}} - 2 = \frac{\sin\theta}{\sqrt{2}} + \frac{\cos\theta}{\sqrt{2}} - 2 \in [-3, -1]$$
$$\frac{\sin\theta}{\sqrt{2}} + \frac{\cos\theta}{\sqrt{2}} - 2 = -1 \text{ only}$$

10.
$$(\cos^{-1} x)^2 - (\sin^{-1} x)^2 > 0 \Rightarrow (\cos^{-1} x + \sin^{-1} x)(\cos^{-1} x - \sin^{-1} x) > 0$$

$$\Rightarrow \cos^{-1} x - \sin^{-1} x > 0$$

$$\Rightarrow \frac{\pi}{2} - 2\sin^{-1} x > 0 \Rightarrow -\frac{\pi}{2} \le \sin^{-1} x < \frac{\pi}{4} \Rightarrow -1 \le x < \frac{1}{\sqrt{2}}$$

11.
$$f(x) = x^2 + 7x + k(k-3) = 0$$

$$f(0) < 0 \quad (\because k \in (0,3))$$

 $\Rightarrow \alpha$ and β are of opposite sign.

$$\tan^{-1}\alpha + \tan^{-1}\left(\frac{1}{\alpha}\right) + \tan^{-1}\beta + \tan^{-1}\left(\frac{1}{\beta}\right) = 0$$

12.
$$f(x) = a + 2b\cos^{-1} x$$

$$D_f: [-1, 1]$$

f(x) is decreasing function.

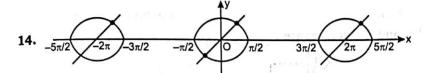
$$\Rightarrow f(-1) = 1 \Rightarrow a + 2b\pi = 1$$

Inverse Trigonometric Functions

345

and
$$f(1) = -1$$
 $\Rightarrow a = -1$

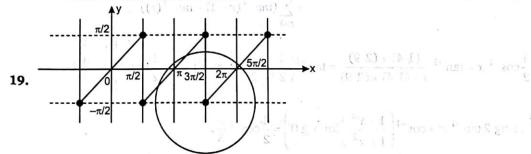
13. Let
$$\tan^{-1} x = t$$
 $\Rightarrow t^2 + \left(\frac{\pi}{2} - t\right)^2 = \frac{5\pi^2}{8}$
 $\Rightarrow t = \frac{3\pi}{4} \text{ or } \frac{-\pi}{4} \Rightarrow \tan^{-1} x = \frac{-\pi}{4} \Rightarrow x = -1$



- 15. $1 \le \sin^{-1}(\cos^{-1}(\sin^{-1}(\tan^{-1}x))) \le \frac{\pi}{2}$ $\sin 1 \le \cos^{-1}(\sin^{-1}(\tan^{-1}x)) \le 1$ $\cos(\sin 1) \ge \sin^{-1}(\tan^{-1}x) \ge \cos 1$ $\sin(\cos(\sin 1)) \ge \tan^{-1}x \ge \sin(\cos 1)$ $\tan(\sin(\cos(\sin 1))) \ge x \ge \tan(\sin(\cos 1))$
- **16.** $x + \frac{1}{x} = -2\sin(\cos^{-1} y) \implies x = -1 \text{ and } y = 0$
- 17. $\tan^{-1} 1 + \tan^{-1} 2 + \tan^{-1} 3$ $\tan^{-1} 1 + \pi + \tan^{-1} \left(\frac{5}{1-6} \right) = \pi$
- **18.** Let $\tan^{-1} x = \theta, \theta \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

$$2\theta + \cos^{-1}\cos 2\theta \Rightarrow 2\theta \le 0$$

$$\theta \le 0 \Rightarrow \tan^{-1} x \le 0 \Rightarrow x \le 0$$



$$16(x^{2} + y^{2}) - 48\pi x + 16\pi y + 31\pi^{2} = 0$$

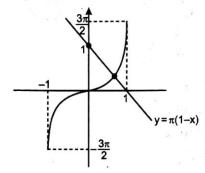
$$x^{2} + y^{2} - 3\pi x + \pi y + \frac{31\pi^{2}}{16} = 0$$

$$\left(x-\frac{3\pi}{2}\right)^2 + \left(y+\frac{\pi}{2}\right)^2 = \frac{9\pi^2}{16}$$

22.
$$\sin^{-1}(\sin 8) = 3\pi - 8 = t$$

 $\tan^{-1}(\tan 8) = 8 - 3\pi = -t$
 $f(t) + f(-t) = \lambda$

23. Graphs of
$$y = 3 \sin^{-1} x$$
 and $y = \pi(1 - x)$ are



Clearly one point of intersection

24.
$$D_f: [-1, 1]$$

 $f(x)_{\text{max}} = \frac{\pi}{2} + 6 \text{ at } x = 1$
 $f(x)_{\text{min}} = -\frac{\pi}{2} - 2 \text{ at } x = -1$

27.
$$\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right) + \dots = \sum_{r=1}^{\infty} \tan^{-1}\left(\frac{1}{r^2 + r + 1}\right)$$
$$= \sum_{r=1}^{\infty} (\tan^{-1}(r+1) - \tan^{-1}(r))$$

28.
$$\frac{1}{2}\cos^{-1}x = \tan^{-1}\frac{(1/4) + (2/9)}{1 - (1/4) \times (2/9)} = \tan^{-1}\left(\frac{1}{2}\right) = \frac{1}{2} \times 2\tan^{-1}\left(\frac{1}{2}\right) = \frac{1}{2}\cos^{-1}\left[\frac{1 - \frac{1}{4}}{1 + \frac{1}{4}}\right]$$

$$\left(\text{using } 2\tan^{-1}x = \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right)\text{for } x \ge 0\right) = \frac{1}{2}\cos^{-1}\frac{3}{5}.$$

29.
$$\tan^2(\sin^{-1} x) > 1 \Rightarrow -\frac{\pi}{2} < \sin^{-1} x < -\frac{\pi}{4} \text{ or } \frac{\pi}{4} < \sin^{-1} x < \frac{\pi}{2}$$

30.
$$\cot^{-1}\left(\frac{1+2\times4}{4-2}\right) + \cot^{-1}\left(\frac{1+4\times8}{8-4}\right) + \cot^{-1}\left(\frac{1+8\times16}{16-8}\right) + \dots$$

=
$$\cot^{-1}(2) - \cot^{-1}(4) + \cot^{-1}(4) - \cot^{-1}(8) + \cot^{-1}(8) - \cot^{-1}(16) + \dots$$

= $\cot^{-1}(2)$

32.
$$\sin^{-1}(1+x)$$
 is defined for $x < 0$ and $\sin^{-1} x = \frac{\pi}{2} - \cos^{-1} x \ \forall -1 \le x \le 1$.

The given equation is $\sin^{-1} x + \sin^{-1} (1 + x) = \cos^{-1} x$ which can be written as

$$\frac{\pi}{2} - \cos^{-1} x + \frac{\pi}{2} - \cos^{-1} (1 + x) = \cos^{-1} x$$

$$\Rightarrow \pi - \cos^{-1}(1+x) = 2\cos^{-1}x$$

$$\Rightarrow$$
 $\cos^{-1}(-1-x) = 2\pi - \cos^{-1}(2x^2-1)$

$$\Rightarrow$$
 $\cos^{-1}(-1-x) + \cos^{-1}(2x^2-1) = 2\pi$

$$\Rightarrow \cos^{-1}(-1-x) = \cos^{-1}(2x^2-1) = \pi$$

$$\Rightarrow -1-x=2x^2-1=-1$$

$$\Rightarrow x=0$$

which implies that the total number of solutions $\sin^{-1} x + \sin^{-1} (1 + x) = \cos^{-1} x$ is only one.

33.
$$(\sin^{-1} x)^3 - (\cos^{-1} x)^3 + (\sin^{-1} x)(\cos^{-1} x)(\sin^{-1} x - \cos^{-1} x) = \frac{\pi^3}{16}$$

$$(\sin^{-1} x - \cos^{-1} x)\{(\sin^{-1} x)^2 + (\cos^{-1} x)^2 + (2\cos^{-1} x\sin^{-1} x)\} = \frac{\pi^3}{16}$$

$$(\sin^{-1} x - \cos^{-1} x)(\sin^{-1} x + \cos^{-1} x)^2 = \frac{\pi^3}{16}$$

$$(\sin^{-1} x - \cos^{-1} x) \frac{\pi^2}{4} = \frac{\pi^3}{16}$$

$$2\sin^{-1} x - \frac{\pi}{2} = \frac{\pi}{4}$$

$$2\sin^{-1}x=\frac{3\pi}{4}$$

$$\sin^{-1} x = \frac{3\pi}{8}$$

$$x = \sin \frac{3x}{8} \text{ or } \cos \frac{x}{8}$$

35.
$$f(x) = \tan^{-1} \left(\frac{\sqrt{1+x^2} - 1}{x} \right)$$

$$\frac{\sqrt{1+x^2} - 1}{x} = y$$

Solution of Advanced Problems in Mathematics for JEE

$$y' = \frac{x \frac{1}{2} \frac{2x}{\sqrt{1+x^2}} - (\sqrt{1+x^2} - 1)}{x^2}$$

$$= \frac{\sqrt{1+x^2} - 1}{x^2 (\sqrt{1+x^2})} > 0 \text{ always}$$

$$x \to \infty \qquad y \to 1$$

$$x \to -\infty \qquad y \to -1$$

$$\tan^{-1}(-1 \to 1)$$

$$\left(-\frac{\pi}{4}, \frac{\pi}{4}\right) - \{0\}$$

40.
$$\cos^{-1} x + \cot^{-1} x = \lambda \ \forall \ x \in [-1, 1]$$

 $\lambda \in \left[\frac{\pi}{4}, \frac{7\pi}{4}\right]$

41.
$$x^3 + bx^2 + cx + 1 = 0$$

 $f(-1) = b - c < 0$
 $f(0) = 1 > 0$
 $\Rightarrow -1 < \alpha < 0$
 $\alpha = -B$
 $B \in (0, 1)$
 $y = -2 \tan^{-1}(\csc B) - \tan^{-1}\left(\frac{2 \sin B}{\cos^2 B}\right)$
 $= -\left(\pi + \tan^{-1}\frac{2 \cos B}{1 - \csc^2 B}\right) - \tan^{-1}\frac{2 \sin B}{\cos^2 B} = -\pi$

42.
$$f(x) = \frac{\pi}{2} + \cot^{-1} \{-x\}$$

 $\frac{\pi}{4} < \cot^{-1} \{-x\} \le \frac{\pi}{2}$

43.
$$\sin^{-1}(\sin 3) + \tan^{-1}(\tan 3) + \sec^{-1}(\sec 3)$$

 $(\pi - 3) + (3 - \pi) + 3 = 3$

44.
$$(2n\pi, 0) n \in I$$

45.
$$f(x) = \sin^{-1}([x] - 1) + 2\cos^{-1}([x] - 2)$$

 $-1 \le [x] - 1 \le 1 \implies 0 \le [x] \le 2$
 $-1 \le [x] - 2 \le 1 \implies 1 \le [x] \le 3 \implies [x] = 1 \text{ or } 2$

Exercise-2: One or More than One Answer is/are Correct

2.
$$\cos^{-1} x = \tan^{-1} x \Rightarrow x \in [0, 1]$$

 $\tan^{-1} \left(\frac{\sqrt{1 - x^2}}{x} \right) = \tan^{-1} x$

$$\Rightarrow x^{2} = \sqrt{1 - x^{2}} \Rightarrow x^{4} + x^{2} - 1 = 0$$
$$x^{2} = \frac{\sqrt{5} - 1}{2}$$

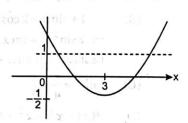
3.
$$\tan\left(\cos^{-1}\frac{4}{5} + \tan^{-1}\frac{2}{3}\right) = \tan\left(\tan^{-1}\left(\frac{17}{6}\right)\right)$$

 $a = 17, b = 6$

5.
$$\sin^{-1}\left(x^2 - 6x + \frac{17}{2}\right) = \sin^{-1}k$$

where $-1 \le k \le 1$

$$y=x^2-6x+\frac{17}{2}$$



6.
$$(\sin^{-1} x - \cos^{-1} x)((\sin^{-1} x)^2 + (\cos^{-1} x)^2 + 2\sin^{-1} x \cos^{-1} x) = \frac{\pi^3}{16}$$

$$\Rightarrow \sin^{-1} x - \cos^{-1} x = \frac{\pi}{4} \Rightarrow \cos^{-1} x = \frac{\pi}{8} \Rightarrow x = \cos\frac{\pi}{8}$$

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

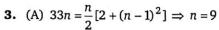
- 1. $a = 2\pi$
 - b = -3

b=3

2. a = 0

350

Exercise-4: Matching Type Problems



(B)
$$x \in [-1, 1] \Rightarrow \cos^{-1} x + \cot^{-1} x \in \left[\frac{\pi}{4}, \frac{7\pi}{4}\right]$$

(C)
$$\cos \theta = |1 + \sin \theta| \Rightarrow \cos \theta \ge 0$$

Sq. both sides,

$$\Rightarrow \cos^2 \theta = 1 + \sin^2 \theta + 2\sin \theta$$
$$\sin \theta = 0 \text{ or } \sin \theta = -1$$

Number of solution = 3

(D) a = x(x-1)

Possible values of *a* are 6, 12, 20, 30.

4. (A)
$$\tan^{-1}(3) + \tan^{-1}(-3) = 0$$

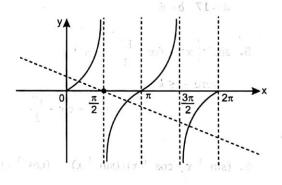
(B)
$$1 + \sin x = 2\cos^2 x$$

 $\Rightarrow 2\sin^2 x + \sin x - 1 = 0$
 $(2\sin x - 1)(\sin x + 1) = 0$

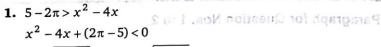
(C)
$$\tan x = \frac{\pi}{4} - \frac{\pi}{2}$$

(D)
$$f(x) = x^3 + x^2 + 4x + 2\sin x$$

 $f'(x) = 3x^2 + 2x + 4 + 2\cos x > 0$
and $f(0) = 0$



Exercise-5: Subjective Type Problems



$$2 - \sqrt{9 - 2\pi} < x < 2 + \sqrt{9 - 2\pi} \implies \lambda = 9$$

2.
$$\sin \frac{B}{2} = \frac{r}{IB}$$

$$IB = 4R \sin \frac{A}{2} \sin \frac{C}{2}$$

$$\sin \left(90^{\circ} - \frac{B}{2}\right) = \frac{r_1}{BI_1} \implies BI_1 = 4R \sin \frac{A}{2} \cos \frac{C}{2}$$

$$(II_1)^2 = (BI)^2 + (BI_1)^2 = 16R^2 \sin^2 \frac{A}{2} \qquad \dots (1)$$



351

$$I_2I_3\cos\left(90^\circ - \frac{A}{2}\right) = a$$
 (by using pedal triangle)

$$I_2I_3 = 4R\cos\frac{A}{2}$$

$$(I_2I_3)^2 = 16R^2\cos^2\frac{A}{2}$$
 ...(2)

From (1) & (2) we get $\lambda = 16$

3.
$$2 \tan^{-1} \left(\frac{1}{5}\right) - \sin^{-1} \left(\frac{3}{5}\right)$$

 $\tan^{-1} \left(\frac{5}{12}\right) - \sin^{-1} \left(\frac{3}{5}\right)$
 $\tan^{-1} \left(\frac{5}{12}\right) - \tan^{-1} \left(\frac{3}{4}\right) = -\left(\tan^{-1} \left(\frac{3}{4}\right) - \tan^{-1} \left(\frac{5}{12}\right)\right)$
 $= -\tan^{-1} \left(\frac{16}{63}\right) = -\cos^{-1} \left(\frac{63}{65}\right)$
 $\Rightarrow \lambda = 65$

5.
$$\sum_{n=0}^{\infty} 2 \tan^{-1} \left(\frac{2}{n^2 + n + 4} \right) = \sum_{n=0}^{\infty} 2 \tan^{-1} \left(\frac{\frac{1}{2}}{\frac{n^2}{4} + \frac{n}{4} + 1} \right)$$
$$= \sum_{n=0}^{\infty} 2 \tan^{-1} \left(\frac{\left(\frac{n}{2} + \frac{1}{2} \right) - \frac{n}{2}}{\frac{n}{2} \left(\frac{n}{2} + \frac{1}{2} \right) + 1} \right)$$
$$= \sum_{n=0}^{\infty} 2 \left(\tan^{-1} \left(\frac{n}{2} + \frac{1}{2} \right) - \tan^{-1} \left(\frac{n}{2} \right) \right)$$

6.
$$\cos^{-1}(|3\log_{6}^{2}(\cos x) - 7|) = \cos^{-1}(|\log_{6}^{2}(\cos x) - 1|)$$

 $|3\log_{6}^{2}(\cos x) - 7| = |\log_{6}^{2}(\cos x) - 1|$
Let $\log_{6}^{2}(\cos x) = t$
 $|3t - 7| = |t - 1|$
 $\Rightarrow t = 3 \text{ and } t = 2$
 $\Rightarrow \cos x = 6^{-\sqrt{3}} \text{ and } 6^{-\sqrt{2}}$

Chapter 26 - Vector & 3Dimensional Geometry

VECTOR & 3DIMENSIONAL GEOMETRY

Exercise-1: Single Choice Problems

1. Perpendicular distance from origin

$$d = \frac{p}{\sqrt{a^2 + b^2 + c^2}}$$
$$d^2 = \frac{p^2}{a^2 + b^2 + c^2}$$

2. Area of triangle = $\frac{1}{2} | \overrightarrow{a} \times \overrightarrow{b} | = 3$

$$\Rightarrow |\overrightarrow{a}| |\overrightarrow{b}| \sin \frac{\pi}{3} = 6 \Rightarrow |\overrightarrow{a}| |\overrightarrow{b}| = \frac{12}{\sqrt{3}}$$

$$\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}||\overrightarrow{b}|\cos\frac{\pi}{3} = 2\sqrt{3}$$

4. $|\vec{c} - \vec{a}|^2 = 8 \Rightarrow |\vec{c}|^2 - 2\vec{c} \cdot \vec{a} + |\vec{a}|^2 = 8 \Rightarrow |\vec{c}|^2 - 2|\vec{c}| + 1 = 0 \Rightarrow |\vec{c}|^2 = 1$

Also,
$$\overrightarrow{a} \times \overrightarrow{b} = 2\hat{i} + 2\hat{j} + \hat{k} \Rightarrow |\overrightarrow{a} \times \overrightarrow{b}| = 3$$

$$\therefore |(\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c}| = |\overrightarrow{a} \times \overrightarrow{b}| |\overrightarrow{c}| \sin \frac{\pi}{6} = 3 \cdot 1 \cdot \frac{1}{2} = \frac{3}{2}$$

5.

$$\cos\theta_2 = \frac{4}{5}$$

$$\Rightarrow \cos^2 \theta_1 + \sin^2 \theta_2 = 1$$

 $\Rightarrow \cos^2 \theta_1 + \sin^- \theta_2 = 1$ 7. $\lambda(\overrightarrow{a} \times \overrightarrow{b}) \cdot (\overrightarrow{a} \times \overrightarrow{b}) = 4\sqrt{3}$ $\left(ab \cos \frac{\pi}{3} = 1\right) \Rightarrow b = 1$

$$\lambda(a^2b^2-(\stackrel{\rightarrow}{a}\cdot\stackrel{\rightarrow}{b})^2)=4\sqrt{3}$$

Vector & 3Dimensional Geometry

$$\lambda(4 \times 1 - (1)^2) = 4\sqrt{3}$$
$$\lambda = \frac{4\sqrt{3}}{3}$$

8.
$$x(3\hat{i} + 2\hat{j} + 4\hat{k}) + y(2\hat{i} + 2\hat{k}) + z(4\hat{i} + 2\hat{j} + 3\hat{k}) = \alpha(x\hat{i} + y\hat{j} + z\hat{k})$$

$$\Rightarrow \qquad (3 - \alpha)x + 2y + 4z = 0$$

$$2x - \alpha y + 2z = 0$$

$$4x + 2y + (3 - \alpha)z = 0$$

For non-trivial solution

$$\begin{vmatrix} 3 - \alpha & 2 & 4 \\ 2 & -\alpha & 2 \\ 4 & 2 & 3 - \alpha \end{vmatrix} = 0$$

9.
$$\begin{vmatrix} \overrightarrow{a} \cdot \overrightarrow{a} & \overrightarrow{a} \cdot \overrightarrow{b} & \overrightarrow{a} \cdot \overrightarrow{c} \\ \overrightarrow{a} \cdot \overrightarrow{a} & \overrightarrow{a} \cdot \overrightarrow{b} & \overrightarrow{a} \cdot \overrightarrow{c} \\ \overrightarrow{b} \cdot \overrightarrow{a} & \overrightarrow{b} \cdot \overrightarrow{b} & \overrightarrow{b} \cdot \overrightarrow{c} \\ \overrightarrow{c} \cdot \overrightarrow{a} & \overrightarrow{c} \cdot \overrightarrow{b} & \overrightarrow{c} \cdot \overrightarrow{c} \end{vmatrix} = [\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}]^2$$

10.
$$|\vec{c}|^2 = 4(\vec{a} \times \vec{b})^2 + 9b^2 = 4(a^2b^2 - (\vec{a} \cdot \vec{b})^2) + 9b^2 = 192$$

$$\vec{c} + 3\vec{b} = 2\vec{a} \times \vec{b} \implies c^2 + 9b^2 + 6\vec{b} \cdot \vec{c} = 4(a^2b^2 - (\vec{a} \cdot \vec{b})^2)$$

$$\implies 6 \cdot 4 \cdot \sqrt{192}\cos\theta = -288 \implies \cos\theta = \frac{-\sqrt{3}}{2}$$

11.
$$|\overrightarrow{a} - 2\overrightarrow{b}|^2 + |\overrightarrow{b} - 2\overrightarrow{c}|^2 + |\overrightarrow{c} - 2\overrightarrow{a}|^2 = 5a^2 + 5b^2 + 5c^2 - 4(\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a})$$

= $15 - 4(\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}) \le 15 - 4(\frac{-3}{2}) = 21$

$$\therefore \quad \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a} \ge \frac{-3}{2}$$

12.
$$16|\overrightarrow{a}||\overrightarrow{b}|\sin\frac{\pi}{2} = 3|\overrightarrow{a}|^2 + 3|\overrightarrow{b}|^2 + 6|\overrightarrow{a}||\overrightarrow{b}|$$

$$\Rightarrow 3a^2 - 10ab + 3b^2 = 0 \Rightarrow (3a - b)(a - 3b) = 0$$

$$3a^{2} - 10ab + 3b^{2} = 0 \implies (3a - b)(a - 3b) = 0$$
Now
$$\overrightarrow{OC} \cdot \overrightarrow{AB} = (\overrightarrow{a} + \overrightarrow{b}) \cdot (\overrightarrow{b} - \overrightarrow{a}) = |\overrightarrow{OC}| |\overrightarrow{AB}| \cos \theta$$

Now
$$\frac{b^2 - a^2}{\sqrt{a^2 + b^2} \sqrt{a^2 + b^2}} = \cos \theta = \frac{9a^2 - a^2}{9a^2 + a^2}$$
 (using $b = 3a$)

$$\cos\theta = \frac{4}{5}$$

354

$$\tan\frac{\theta}{2} = \sqrt{\frac{1 - \cos\theta}{1 + \cos\theta}} = \sqrt{\frac{1 - \frac{4}{5}}{1 + \frac{4}{5}}} = \frac{1}{3}$$

13.
$$\overrightarrow{AM} = \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{AC})$$

14.
$$\begin{vmatrix} 2 & \lambda & 3 \\ 3 & 3 & 5 \\ \lambda & 2 & 2 \end{vmatrix} = 0 \implies \lambda^2 - 3\lambda + 2 = 0$$

15.
$$(\overrightarrow{a} + \overrightarrow{b} - \overrightarrow{c}) \cdot \left[(\overrightarrow{b} + \overrightarrow{c} - \overrightarrow{a}) \times (\overrightarrow{c} + \overrightarrow{a} - \overrightarrow{b}) \right]$$

 $(\overrightarrow{a} + \overrightarrow{b} - \overrightarrow{c}) \cdot (\overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{a} + \overrightarrow{c} \times \overrightarrow{a} - \overrightarrow{c} \times \overrightarrow{b} - \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{a} \times \overrightarrow{b}) = 2(\overrightarrow{a} + \overrightarrow{b} - \overrightarrow{c}) \cdot (\overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a})$
 $= 2([\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] + [\overrightarrow{b} \ \overrightarrow{c} \ \overrightarrow{a}]) = 4[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}]$

16.
$$(\hat{a} \times \hat{b}) \times (\hat{a} + \hat{b}) = (\hat{a} \cdot (\hat{a} + \hat{b})) \hat{b} - (\hat{b} \cdot (\hat{a} + \hat{b})) \hat{a} = (1 + \hat{a} \cdot \hat{b}) (\hat{b} - \hat{a})$$

17. Angle between planes is angle between
$$\vec{n_1}$$
 and $\vec{n_2}$, where $\vec{n_1} = \overrightarrow{AB} \times \overrightarrow{AC}$ and $\vec{n_2} = \overrightarrow{AD} \times \overrightarrow{AC}$

$$\vec{n_1} = -2\hat{i} + 4\hat{j} - 3\hat{k}, \qquad \vec{n_1} = 6\hat{i} + 3\hat{j} - 6\hat{k}$$

18. $\vec{a_1} = x_1 \hat{i} + y_1 \hat{j} + z_1 \hat{k}$, $\vec{a_2} = x_2 \hat{i} + y_2 \hat{j} + z_2 \hat{k}$ and $\vec{a_3} = x_3 \hat{i} + y_3 \hat{j} + z_3 \hat{k}$ are mutually perpendicular unit vectors, then

$$\begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \vec{a}_3 \end{bmatrix} = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} = \pm 1$$

22. On solving, Ax = C and Bx = D

On solving,
$$Ax = C$$
 and $Bx = D$

$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad x = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$$

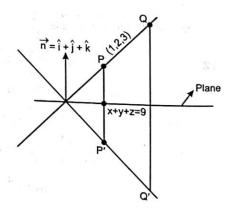
$$P = (1, 2, 3), \ Q = (3, 1, 2)$$

$$PP': \frac{x-1}{1} = \frac{y-2}{1} = \frac{z-3}{1} = \lambda$$

$$(\lambda + 1, \lambda + 2, \lambda + 3) \qquad \text{lies on plane}$$

$$3\lambda + 6 = 9 \Rightarrow \lambda = 1$$

$$\therefore \qquad P' = (3, 4, 5)$$
Similarly $Q' = (5, 3, 4)$



Vector & 3Dimensional Geometry

355

Now check the options.

23.
$$\overrightarrow{AM} = (\alpha - 1)\hat{i} + \hat{j}$$

 $\overrightarrow{BM} = (\alpha - 1)\hat{i}$
 $\overrightarrow{CM} = (\alpha - 3)\hat{i} + 2\hat{j} + 2\hat{k}$ are coplanar, then $\begin{vmatrix} \alpha - 1 & 1 & 0 \\ \alpha - 2 & 0 & 0 \\ \alpha - 3 & 2 & 2 \end{vmatrix} = 0$

24. Normal vector is parallel to \overrightarrow{PQ}

$$\frac{x_1-1}{1} = \frac{y_1+2}{-1} = \frac{z_1-3}{1} = \lambda$$

 $\Rightarrow x_1 = \lambda + 1, \ y_1 = -2 - \lambda, \ z_1 = 3 + \lambda$

Mid point of PQ is lie on the plane

$$\Rightarrow \lambda = \frac{2}{3}$$

$$Q\left(\frac{5}{3}, \frac{-8}{3}, \frac{11}{3}\right)$$

25.
$$|\hat{a} - \hat{b}| = 1$$

$$\Rightarrow \cos \theta = \frac{1}{2}$$

Volume of parallelopiped = $[\hat{a} \quad \hat{b} \quad \hat{a} \times \hat{b}] = \sin^2 \theta = \frac{3}{4}$

26. Equation of line PQ

$$\frac{x-3}{1} = \frac{y-7}{2} = \frac{z-1}{-6} = \lambda$$

Point $Q(3 + \lambda, 7 + 2\lambda, 1 - 6\lambda)$

If it lies on plane 3x + 2y + 11z = 9, then

$$\lambda = \frac{25}{59}$$

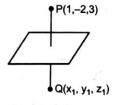
27.
$$V_1 = \begin{bmatrix} a & b & c \end{bmatrix}$$

$$V_2 = \begin{bmatrix} a+b-2c & 3a-2b+c & a-4b+2c \end{bmatrix} = 15\begin{bmatrix} a & b & c \end{bmatrix}$$

28. Line represented by x + ay - b = 0, cy + z - d = 0 is parallel to $(\hat{i} + a\hat{j}) \times (c\hat{j} + \hat{k}) = a\hat{i} - \hat{j} + c\hat{k}$

$$(i + aj) \times (cj + k) = ai - j + ck$$
by $x + ab + b = 0$ of a parallel to

Line represented by -x + a'y + b' = 0, c'y - z + d' = 0 is parallel to $(\hat{i} - a'\hat{j}) \times (c'\hat{j} - \hat{k}) = a'\hat{i} + \hat{j} + c'\hat{k}$



358

If these two lines are perpendicular, then

$$aa' + cc' = 1$$

29. Equation of line PQ

$$\vec{r} = (2\hat{i} - 2\hat{j} + 3\hat{k}) + \mu(\hat{i} + 5\hat{j} + \hat{k})$$

 \Rightarrow Co-ordinate of $Q(2 + \mu, 5\mu - 2, 3 + \mu)$

If point Q lies on plane, then

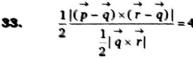
$$\mu = \frac{10}{27}$$

$$\overrightarrow{PQ} = \mu \hat{i} + 5\mu \hat{j} + \mu \hat{k} = \frac{10}{27} \hat{i} + \frac{50}{27} \hat{j} + \frac{10}{27} \hat{k}$$

30.
$$(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$$
$$(\vec{a} \cdot \vec{c}) \vec{b} - (\vec{b} \cdot \vec{c}) \vec{a} = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$$
$$\Rightarrow (\vec{a} \cdot \vec{b}) \vec{c} = (\vec{b} \cdot \vec{c}) \vec{a}$$

31. Let
$$\overrightarrow{r} = x\hat{i} + y\hat{j}$$

 $\overrightarrow{r} \cdot (\overrightarrow{r} + 6\hat{i}) = 7$
 $\Rightarrow x^2 + (y + 3)^2 = 16$
Area of quadrilateral = $8\sqrt{7}$

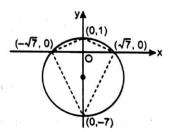


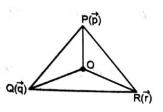
Also,
$$\overrightarrow{p} + k_1 \overrightarrow{q} + k_2 \overrightarrow{r} = 0$$

$$\Rightarrow \overrightarrow{p} = -k_1 \overrightarrow{q} - k_2 \overrightarrow{r} = 0$$

$$\Rightarrow k_1 + k_2 + 1 = 4$$

$$\Rightarrow k_1 + k_2 = 3$$





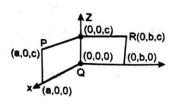
34. Let length, breadth and height of rectangular box be a, b, c respectively.

$$\vec{P} = a\hat{i} + c\hat{k}$$

$$\vec{R} = b\hat{j} + c\hat{k}$$

$$\vec{O} = \frac{a}{2}\hat{i} + \frac{b}{2}\hat{j} + \frac{c}{2}\hat{k}$$

$$|\overrightarrow{OQ}||\overrightarrow{OR}|\cos\theta = \left(\frac{a}{2}\hat{i} + \frac{b}{2}\hat{j} + \frac{c}{2}\hat{k}\right) \cdot \left(\frac{a}{2}\hat{i} - \frac{b}{2}\hat{j} - \frac{c}{2}\hat{k}\right)$$



Vector & 3Dimensional Geometry

 $\Rightarrow \qquad \cos\theta = -\frac{1}{3}$

Similarly,

 $\cos \phi = -\frac{1}{3}$

36. $\mathbf{r} = a(\mathbf{m} \times \mathbf{n}) + b(\mathbf{n} \times \mathbf{1}) + c(\mathbf{1} \times \mathbf{m})$

where $[\mathbf{1} \mathbf{m} \mathbf{n}] = 4$, $\mathbf{r} \cdot \mathbf{1} = 4a$, $\mathbf{r} \cdot \mathbf{m} = 4b$, $\mathbf{r} \cdot \mathbf{n} = 4c$

which imply that

$$\frac{a+b+c}{\overrightarrow{r}\cdot(1+\mathbf{m}+\mathbf{n})} = \frac{1}{4}$$

37. The volume tetrahedron is given by $k = \frac{1}{6} \begin{bmatrix} \vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}} \end{bmatrix} \Rightarrow \begin{bmatrix} \vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}} \end{bmatrix} = 6k$

The volume of parallelepiped is given by

$$[\mathbf{a} - \mathbf{b} \ \mathbf{b} + 2 \mathbf{c} \ 3 \mathbf{a} - \mathbf{c}] = [\mathbf{a} \ \mathbf{b} + 2 \mathbf{c} \ 3 \mathbf{a} - \mathbf{c}] + [-\mathbf{b} \ \mathbf{b} + 2 \mathbf{c} \ 3 \mathbf{a} - \mathbf{c}]$$

$$= [\mathbf{a} \ \mathbf{b} \ 3 \mathbf{a} - \mathbf{c}] + [\mathbf{a} \ 2 \mathbf{c} \ 3 \mathbf{a} - \mathbf{c}] + [-\mathbf{b} \ \mathbf{b} \ 3 \mathbf{a} - \mathbf{c}] + [-\mathbf{b} \ 2 \mathbf{c} \ 3 \mathbf{a} - \mathbf{c}]$$

$$= [\mathbf{a} \ \mathbf{b} \ 3 \mathbf{a} - \mathbf{c}] + [-\mathbf{b} \ 2 \mathbf{c} \ 3 \mathbf{a} - \mathbf{c}] + [-\mathbf{b} \ 2 \mathbf{c} \ 3 \mathbf{a} - \mathbf{c}]$$

$$= [\mathbf{a} \ \mathbf{b} - \mathbf{c}] + [-\mathbf{b} \ 2 \mathbf{c} \ 3 \mathbf{a}] = -[\mathbf{a} \ \mathbf{b} \ \mathbf{c}] - 6[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]$$

$$= -7[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]$$

Volume is 42 k.

38. We know that the equation of the plane passing through the line of intersection of planes $p_1 = 0$ and $p_2 = 0$ is

$$p_1 + \lambda p_2 = 0$$

That is,

$$(x+2y+z-10)+\lambda(3x+y-z-5)=0 \qquad ...(1)$$

Since, this plane passes through the origin (0,0,0) satisfies this equation. This implies that

$$(-10) + \lambda(-5) = 0$$

⇒

$$\lambda = -2$$

Substituting the value of λ in Eq. (1), we get

$$(x+2y+z-10)-2(3x+y-z-5)=0$$

That is,

$$-5x + 3z = 0$$

 \Rightarrow

$$5x - 3z = 0$$

39. Let the point $P(x_p, y_p, z_p)$ be the required point. The distance of the point from x-axis is $\sqrt{y_p^2 + z_p^2}$.

The distance from the point (1, -1, 2) is

$$\sqrt{(x_p - 1)^2 + (y_p + 1)^2 + (z_p - 2)^2}$$

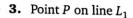
$$\Rightarrow y_p^2 + z_p^2 = (x_p - 1)^2 + (y_p + 1)^2 + (z_p - 2)^2$$

$$\Rightarrow x_p^2 - 2x_p + 2y_p - 4z_p + 6 = 0$$

Therefore, the locus of point P is

$$x^2 - 2x + 2y - 4z + 6 = 0$$

Exercise-2: One or More than One Answer is/are Correct



$$P(2+\lambda, 1+7\lambda, -2-5\lambda)$$

Point P on line L_2

$$P(4+r,-3+r,-r) \Rightarrow \lambda = -1, r = -3$$

Acute angle between L_1 and L_2

$$\cos \theta = \frac{13}{15}$$

Equation of plane containing L_1 and L_2 is x + 2y + 3z + 2 = 0

4.
$$\hat{a} = \hat{b} + (\hat{b} \times \hat{c}) = 0$$
 and $\hat{a} = \hat{b} + (\hat{b} \times \hat{c}) = 0$

$$\hat{a} \cdot \hat{b} = 1$$
 and $\hat{a} \cdot \hat{c} = \hat{b} \cdot \hat{c}$

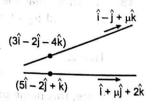
$$|\hat{a} - \hat{b}| = |\hat{b} \times \hat{c}| \implies \sin \theta = 0 \quad (\because \theta = \hat{b} \hat{c})$$

$$|\hat{a} + \hat{b} + \hat{c}|^2 = 3 + 2(\hat{a} \cdot \hat{b} + \hat{b} \cdot \hat{c} + \hat{a} \cdot \hat{c}) = 5 + 4(\hat{b} \cdot \hat{c})$$

5. If these two lines are coplanar, then

$$\begin{vmatrix} 1 & -1 & \mu \\ 1 & \mu & 2 \\ 2 & 0 & 5 \end{vmatrix} = 0$$

$$2u^2 - 5u - 1 - 0$$



6.
$$\hat{i} \times [(\overrightarrow{a} - \hat{j}) \times \hat{i}] + \hat{j} \times [(\overrightarrow{a} - \hat{k}) \times \hat{j}] + \hat{k} \times [(\overrightarrow{a} - \hat{i}) \times \hat{k}] = 0$$

$$2 \vec{a} - (\hat{i} + \hat{j} + \hat{k}) = 0 \implies (2x - 1)\hat{i} + (2y - 1)\hat{j} + (2z - 1)\hat{k} = 0$$
$$\Rightarrow x = y = z = \frac{1}{2}$$

7.
$$[\overrightarrow{a} \times \overrightarrow{b} \quad \overrightarrow{c} \times \overrightarrow{d} \quad \overrightarrow{e} \times \overrightarrow{f}] = (\overrightarrow{a} \times \overrightarrow{b}) \cdot [(\overrightarrow{c} \times \overrightarrow{d}) \times (\overrightarrow{e} \times \overrightarrow{f})] = (\overrightarrow{c} \times \overrightarrow{d}) \cdot [(\overrightarrow{e} \times \overrightarrow{f}) \times (\overrightarrow{a} \times \overrightarrow{b})]$$

$$= (\overrightarrow{e} \times \overrightarrow{f}) \cdot [(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{c} \times \overrightarrow{d})]$$

$$= (\overrightarrow{a} \times \overrightarrow{b}) \cdot [(\overrightarrow{c} \times \overrightarrow{d}) \cdot \overrightarrow{f}] \stackrel{?}{e} - [(\overrightarrow{c} \times \overrightarrow{d} \cdot \overrightarrow{e}) \times \overrightarrow{f}]$$

Nector & 3Dimensional Geometry

 $= \begin{bmatrix} \overrightarrow{c} & \overrightarrow{d} & \overrightarrow{f} \end{bmatrix} \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{e} \end{bmatrix} - \begin{bmatrix} \overrightarrow{c} & \overrightarrow{d} & \overrightarrow{e} \end{bmatrix} \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{f} \end{bmatrix}$

Similarly, solve other 2.

8.
$$3(\overrightarrow{a} - \overrightarrow{b}) + (\overrightarrow{b} - \overrightarrow{c}) + 2(\overrightarrow{c} - \overrightarrow{d}) = 0$$

$$\frac{\overrightarrow{BC} + 2\overrightarrow{CD}}{1 + 2} = \overrightarrow{BA}$$

10.
$$\overrightarrow{b} = 2\hat{c} + \lambda \hat{a}$$

 $|\overrightarrow{b}|^2 = 4 + \lambda^2 + 4\lambda \left(\frac{1}{4}\right) = 16 \implies \lambda = -4,3$

11.
$$L_1: x = y = x$$

 $L_2: \frac{x-1}{1} = \frac{y+1}{-1} = \frac{x}{-1}$
Shortest distance = $\frac{1}{\sqrt{2}}$

Equation of plane containing line L_2 and parallel to L_1

$$y - z + 1 = 0$$

Distance of origin from this plane = $\frac{1}{\sqrt{2}}$

12.
$$\overrightarrow{r} \cdot (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) = 0$$

$$\Rightarrow [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}](\sin x + \cos y + 2) = 0$$

$$\Rightarrow$$
 $\sin x = -1$ and $\cos y = -1$

13.
$$(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{c} \times \overrightarrow{d}) = [(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{d}] \overrightarrow{c} - (\overrightarrow{a} \times \overrightarrow{b} \cdot \overrightarrow{c}) \overrightarrow{d} = \overrightarrow{r} \overrightarrow{c} + \overrightarrow{s} \overrightarrow{d}$$

where $r = [a \ b \ c]$ and $s = -[a \ b \ c]$ as c and d are non-collinear.

Similarly, $h = -\begin{bmatrix} \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{d} \end{bmatrix}$ and $k = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{c} & \overrightarrow{d} \end{bmatrix}$

14. Here,
$$\vec{\alpha} = \hat{i} + 2\hat{j}$$
, $\vec{\beta} = 2\hat{i} + a\hat{j} + 10\hat{k}$ and $\vec{\gamma} = 12\hat{i} + 20\hat{j} + a\hat{k}$

$$\vec{\alpha} \vec{\beta} \vec{\gamma} = \begin{vmatrix} 1 & 2 & 0 \\ 2 & a & 10 \\ 12 & 20 & a \end{vmatrix} = a^2 - 24a + 240 > 0, \text{ for all } a$$

 $\vec{\alpha}$, $\vec{\beta}$ and $\vec{\gamma}$ are non-coplanar or linearly independent for all a.

Hence, (a, b, c) is the correct answer.

19. Let
$$\overrightarrow{\mathbf{r}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$$

If $\overrightarrow{\mathbf{r}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}} + \hat{\mathbf{k}} \implies -y\hat{\mathbf{k}} + z\hat{\mathbf{j}} = \hat{\mathbf{j}} + \hat{\mathbf{k}}$
 $\Rightarrow \overrightarrow{\mathbf{r}} = x\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}$

If $\overrightarrow{\mathbf{r}} \times \hat{\mathbf{j}} = \hat{\mathbf{i}} + \hat{\mathbf{k}} \implies x\hat{\mathbf{k}} - z\hat{\mathbf{i}} = \hat{\mathbf{i}} + \hat{\mathbf{k}}$
 $\overrightarrow{\mathbf{r}} = \hat{\mathbf{i}} + y\hat{\mathbf{j}} - \hat{\mathbf{k}}$

20. (A) See dot product

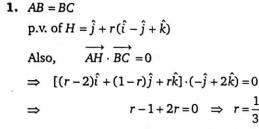
(C)
$$y = \ln(e^{-2} + e^{x})$$

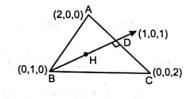
 $e^{y} - e^{-2} = e^{x}$

21.
$$(-3-4\lambda, 6+3\lambda, 2\lambda) = (-2-4\mu, 7+\mu, \mu)$$

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3





2. p.v. of
$$H = \frac{\hat{i}}{3} + \frac{2\hat{j}}{3} + \frac{\hat{k}}{3}$$

p.v. of centroid $= \frac{2}{3}\hat{i} + \frac{\hat{j}}{3} + \frac{2\hat{k}}{3}$
p.v. of $S = \frac{3(p.v.) \text{ of centroid } -p.v. \text{ of } \stackrel{\rightarrow}{H}}{2}$
y coordinate of $S = \frac{1}{6}$

3. Let
$$P = (a, b, c)$$

 $\Rightarrow (a-2)^2 + b^2 + c^2 = a^2 + (b-1)^2 + c^2 = a^2 + b^2 + (c-2)^2 = a^2 + b^2 + c^2$
 $\Rightarrow P = \left(1, \frac{1}{2}, 1\right)$
 $PA = \frac{3}{2}$

Vector & 3Dimensional Geometry

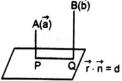
. ennior

Paragraph for Question Nos. 4 to 6

4.
$$PQ = (\overrightarrow{b} - \overrightarrow{a}) \cos \theta$$

(where θ angle between AB and plane)

$$=\frac{|(\overrightarrow{b}-\overrightarrow{a})\times\overrightarrow{n}|}{|\overrightarrow{n}|}$$



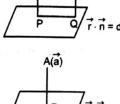
5. Equation of line AP is $\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{n}$

For point $P(\overrightarrow{a} + \lambda \overrightarrow{n}) \cdot \overrightarrow{n} = d$

$$\lambda = \frac{d - \overrightarrow{a} \cdot \overrightarrow{n}}{|\overrightarrow{n}|^2}$$

$$\therefore P\left(\overrightarrow{a} + \frac{\overrightarrow{d-a \cdot n}}{\overrightarrow{|n|^2}}\right) \therefore A' \text{ is } \overrightarrow{a} + 2\left(\frac{\overrightarrow{d-a \cdot n}}{\overrightarrow{|n|^2}}\right)$$

6. Distance =
$$|BQ - AP| = \frac{\begin{vmatrix} \overrightarrow{b} \cdot \overrightarrow{n} - d \\ \overrightarrow{b} \cdot \overrightarrow{n} - d \end{vmatrix}}{\begin{vmatrix} \overrightarrow{b} \cdot \overrightarrow{n} - d \\ |n| \end{vmatrix}} = \frac{\begin{vmatrix} \overrightarrow{b} \cdot \overrightarrow{n} - d \\ (\overrightarrow{b} - \overrightarrow{n}) \cdot \overrightarrow{n} \\ |n| \end{vmatrix}}{\begin{vmatrix} \overrightarrow{b} \cdot \overrightarrow{n} - d \\ |n| \end{vmatrix}}$$



Paragraph for Question Nos. 7 to 9

7.
$$B(3+2\lambda, -1-3\lambda, 2-\lambda)$$

$$d_r$$
 of $L_2 < 2\lambda, -3\lambda + 3, 1 - \lambda >$

 L_2 is parallel to plane $\vec{r} \cdot (2\hat{i} + \hat{j} - \hat{k}) = 5$

$$\therefore \qquad \qquad 4\lambda - 3\lambda + 3 - 1 + \lambda = 0$$

$$2\lambda = -2 \implies \lambda = -1$$

So, equation of
$$L_2$$
 is $\vec{r} = (3\hat{i} - 4\hat{j} + \hat{k}) + \lambda(\hat{i} - 3\hat{j} - \hat{k})$

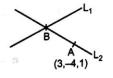
8. Equation of plane contain $L_1 \& L_2$ is

$$\begin{vmatrix} x-3 & y+1 & z-2 \\ 0 & 3 & 1 \\ -1 & 6 & 2 \end{vmatrix} = 0$$

i.e.,
$$(x-3)(6-6)+(y+1)(0+1)+(z-2)(0+3)=0$$

$$y + 3z - 5 = 0$$

9. Any point of L_1 is $(3 + 2\lambda, -1 - 3\lambda, 2 - \lambda)$ if on plane π , then



$$2(3+2\lambda)+1(-1-3\lambda)-1(2-\lambda)=5$$

$$2\lambda = 2 \implies \lambda = 1$$

$$Q(5, -4, 1)$$

if on xy plane, then

$$2-\lambda=0 \Rightarrow \lambda=2$$

$$\therefore R(7,-7,0)$$

Volume of tetrahedran =
$$\frac{1}{6} \begin{bmatrix} \overrightarrow{OA} & \overrightarrow{OQ} & \overrightarrow{OR} \end{bmatrix} = \frac{1}{6} \begin{vmatrix} 3 & -4 & 1 \\ 5 & -4 & 1 \\ 7 & -7 & 0 \end{vmatrix} = \frac{7}{3}$$

Paragraph for Question Nos. 10 to 11

Sol. Use crammer rule,

Intersect at a unique point $\Rightarrow D \neq 0$

Do not have any common point of intersection.

 \Rightarrow D = 0 and at least any one of D_x , D_y , D_z is non-zero (condition of no solution)

Paragraph for Question Nos. 12 to 14

Sol.
$$|\overrightarrow{\mathbf{a}}| = |\overrightarrow{\mathbf{b}}| = |\overrightarrow{\mathbf{c}}| = r$$

$$\overrightarrow{\mathbf{a}} + \left(\frac{\overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}}}{2}\right) + \overrightarrow{\mathbf{c}}$$
PV of E: 3

$$\vec{\mathbf{e}} = \frac{3\vec{\mathbf{a}} + \vec{\mathbf{b}} + 2\vec{\mathbf{c}}}{6}$$

PV of
$$G: \overrightarrow{\mathbf{g}} = \frac{\overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{c}}}{3}$$

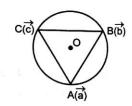
12.
$$\overrightarrow{OE} \cdot \overrightarrow{CD} = 0 \Rightarrow \left(\frac{3 \overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}} + 2\overrightarrow{\mathbf{c}}}{6} \right) \cdot \left(\frac{\overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}}}{2} - \overrightarrow{\mathbf{c}} \right) = 0$$

$$\Rightarrow \overrightarrow{\mathbf{a}} \cdot (\overrightarrow{\mathbf{b}} - \overrightarrow{\mathbf{c}}) = 0$$

$$\therefore$$
 OA \perp BC

:. ABC must be isosceles with base BC.

$$\therefore |\overrightarrow{AC}| = |\overrightarrow{AB}|$$



Vector & 3Dimensional Geometry

13.
$$\overrightarrow{GE} \cdot \overrightarrow{CD} = 0 \Rightarrow \left(\frac{3 \overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}} + 2\overrightarrow{\mathbf{c}}}{6} - \frac{\overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{c}}}{3} \right) \cdot \left(\frac{\overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}}}{2} - \overrightarrow{\mathbf{c}} \right) = 0$$

$$\Rightarrow (\mathbf{a} - \mathbf{b}) \cdot \mathbf{c} = 0 \Rightarrow \mathbf{AB} \perp \mathbf{OC}$$

- :. ABC must be isosceles with base AB.
- :. Circumcentre and centroid lie on median through C.
- :. Orthocenter also lie on median through C.

14.
$$[\overrightarrow{AB} \overrightarrow{AC} \overrightarrow{AB} \times \overrightarrow{AC}] = (\overrightarrow{AB} \overrightarrow{AC})^2$$

$$(\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a})^2$$

$$[\overrightarrow{AE} \overrightarrow{AG} \overrightarrow{AE} \times \overrightarrow{AG}] = (\overrightarrow{AE} \times \overrightarrow{AG})^{2} = \left\{ \frac{-1}{18} (\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}) \right\}^{2}$$
$$= \frac{1}{324} (\overrightarrow{AB} \times \overrightarrow{AC})^{2}$$

Paragraph for Question Nos. 15 to 16

15.
$$D(3,-1,2)$$
 AB lies along $(0,1,2)$ CD lies along $(3,-2,0)$

Equation of plane containing AB line

$$\begin{vmatrix} x-1 & y-1 & z-1 \\ 0 & 1 & 2 \\ 2 & -2 & 0 \end{vmatrix} = 2(x-1) + 2(y-1) - (z-1) = 0$$

Containing CD line 2(x-1) + 2(y-1) - (z-2) = 0

16.
$$r = (3, -1, 2) + d(1, 0, 0)$$

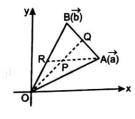
Equation of ABC plane is x = 1.

Paragraph for Question Nos. 17 to 18

17.
$$R\left(\frac{2\overrightarrow{\mathbf{b}}}{5}\right) \text{ and } Q\left(\frac{3\overrightarrow{\mathbf{b}} + 2\overrightarrow{\mathbf{a}}}{5}\right)$$

$$\frac{\mu\left(\frac{3\overrightarrow{\mathbf{b}} + 2\overrightarrow{\mathbf{a}}}{5}\right)}{\mu + 1} = \frac{\lambda \overrightarrow{\mathbf{a}} + 1\left(\frac{2\overrightarrow{\mathbf{b}}}{5}\right)}{\lambda + 1}$$

$$\Rightarrow \frac{2\mu}{5(\mu + 1)} = \frac{\lambda}{\lambda + 1} \text{ and } \frac{3\mu}{5(\mu + 1)} = \frac{2}{5(\lambda + 1)} \Rightarrow \mu = \frac{10}{9}$$



18. Ar
$$(\triangle OPA) = \frac{1}{2} |\overrightarrow{OP} \times \overrightarrow{OA}| = \frac{1}{2} \left[\frac{2}{19} (3\overrightarrow{\mathbf{b}} + 2\overrightarrow{\mathbf{a}}) \times \overrightarrow{\mathbf{a}} \right] = \frac{3}{19} (\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}})$$

Ar $(PQBR) = \frac{1}{2} |\overrightarrow{OQ} \times \overrightarrow{OB} - \overrightarrow{OP} \times \overrightarrow{OR}| = \frac{1}{2} \left[\left(\frac{3\overrightarrow{\mathbf{b}} + 2\overrightarrow{\mathbf{a}}}{5} \right) \times \overrightarrow{\mathbf{b}} - \frac{2}{19} (3\overrightarrow{\mathbf{b}} + 2\overrightarrow{\mathbf{a}}) \times \frac{2\overrightarrow{\mathbf{b}}}{5} \right]$

$$= \frac{3}{19} (\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})$$

Exercise-4: Matching Type Problems

1. (A) Line
$$\frac{x-1}{-2} = \frac{y+2}{3} = \frac{z}{-1}$$
 is along the vector $\vec{a} = -2\hat{i} + 3\hat{j} - \hat{k}$ and line $\vec{r} = (3\hat{i} - \hat{j} + \hat{k}) + t(\hat{i} + \hat{j} + \hat{k})$ is along the vector $\vec{b} = \hat{i} + \hat{j} + \hat{k}$. Here $\vec{a} \perp \vec{b}$.
$$\begin{vmatrix} 3-1 & -1-(-2) & 1-0 \end{vmatrix}$$

Also,
$$\begin{vmatrix} 3-1 & -1-(-2) & 1-0 \\ -2 & 3 & -1 \\ 1 & 1 & 1 \end{vmatrix} \neq 0$$

(B) The direction ratios of the line x - y + 3z - 4 = 0 = 2x + y - 3z + 5 = 0 are

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 2 \\ 2 & 1 & 3 \end{vmatrix} = \hat{i} + 7\hat{j} + 3\hat{k}$$

Hence, the give two lines are parallel.

(C) The given lines are

$$(x = t - 3, y = 2t + 1, z = -3t - 2) \text{ and } \overrightarrow{r} = (t + 1)\hat{i} + (2t + 3)\hat{j} + (-t - 9)\hat{k},$$
or
$$\frac{x + 3}{1} = \frac{y - 1}{-2} = \frac{z + 2}{-3} \text{ and } \frac{x - 1}{1} = \frac{y - 3}{2} = \frac{z + 9}{-1}$$

The lines are perpendicular as (1)(1) + (-2)(2) + (-3)(-1) = 0

Also,
$$\begin{vmatrix} -3-1 & 1-3 & -2-(-9) \\ 1 & -2 & -3 \\ 1 & 2 & -1 \end{vmatrix} = 0$$

Hence, the lines are intersecting.

(D) The given lines are
$$\vec{r} = (\hat{i} + 3\hat{j} - \hat{k}) + t(2\hat{i} - \hat{j} - \hat{k})$$
 and $\vec{r} = (-\hat{i} - 2\hat{j} + 5\hat{k}) + s(\hat{i} - 2\hat{j} + \frac{3}{4}\hat{k})$.
 $|1 - (-1) 3 - (-2) - 1 - 5|$

$$\begin{vmatrix} 1 - (-1) & 3 - (-2) & -1 - 5 \\ 2 & -1 & -1 \\ 1 & -2 & 3/4 \end{vmatrix} = 0$$

1 6/14

Hence, the lines are coplanar and hence intersecting (as the lines are not parallel).

2. (A) If \vec{a} , \vec{b} and \vec{c} are mutually perpendicular, then $[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}] = [\vec{a} \ \vec{b} \ \vec{c}]^2$

$$=(|\overrightarrow{a}||\overrightarrow{b}||\overrightarrow{c}|)^2=16$$

(B) Given \overrightarrow{a} and \overrightarrow{b} are two unit vectors, i.e., $|\overrightarrow{a}| = |\overrightarrow{b}| = 1$ and angle between them is $\frac{\pi}{3}$.

$$\sin \theta = \frac{|\overrightarrow{a} \times \overrightarrow{b}|}{|\overrightarrow{a}| |\overrightarrow{b}|} \Rightarrow \sin \frac{\pi}{3} = |\overrightarrow{a} \times \overrightarrow{b}|; \quad \frac{\sqrt{3}}{2} = |\overrightarrow{a} \times \overrightarrow{b}|$$

Now
$$[\overrightarrow{a} \quad \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{b} \quad \overrightarrow{b}] = [\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{b}] + [\overrightarrow{a} \quad \overrightarrow{a} \times \overrightarrow{b} \quad \overrightarrow{b}] = 0 + [\overrightarrow{a} \quad \overrightarrow{a} \times \overrightarrow{b} \quad \overrightarrow{b}]$$

$$= (\overrightarrow{a} \times \overrightarrow{b}) \cdot (\overrightarrow{b} \times \overrightarrow{a}) = -|\overrightarrow{a} \times \overrightarrow{b}|^2 = -\frac{3}{4}$$

(C) If \overrightarrow{b} and \overrightarrow{c} are orthogonal, $\overrightarrow{b} \cdot \overrightarrow{c} = 0$

Also, it is given that $\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a}$

Now
$$[\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \quad \overrightarrow{a} + \overrightarrow{b} \quad \overrightarrow{b} + \overrightarrow{c}] = [\overrightarrow{a} \quad \overrightarrow{a} + \overrightarrow{b} \quad \overrightarrow{b} + \overrightarrow{c}] + [\overrightarrow{b} + \overrightarrow{c} \quad \overrightarrow{a} + \overrightarrow{b} \quad \overrightarrow{b} + \overrightarrow{c}]$$

$$= [\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}] = \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}] = \overrightarrow{a} \cdot \overrightarrow{a} = |\overrightarrow{a}|^2 = 1$$

(because \overrightarrow{a} is a unit vector)

(D)
$$\begin{bmatrix} \overrightarrow{x} & \overrightarrow{y} & \overrightarrow{a} \end{bmatrix} = 0$$

Therefore, \overrightarrow{x} , \overrightarrow{y} and \overrightarrow{a} are coplanar.

$$[x, y, b] = 0$$

Therefore, \overrightarrow{x} , \overrightarrow{y} and \overrightarrow{b} are coplanar.

Also,
$$[\stackrel{\rightarrow}{a} \stackrel{\rightarrow}{b} \stackrel{\rightarrow}{c}] =$$

Therefore, \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are coplanar.

From (i), (ii) and (iii)

$$\overrightarrow{x}$$
, \overrightarrow{y} and \overrightarrow{c} are coplanar. Therefore, $[x, y \ c] = 0$

...(1)

366

Exercise-5: Subjective Type Problems .

1. Line L is the shortest distance line of given lines.

2.
$$[\hat{a} \ \hat{b} \ \hat{c}] = [\hat{b} \times \hat{c} \ \hat{c} \times \hat{a} \ \hat{a} \times \hat{b}] = [\hat{a} \ \hat{b} \ \hat{c}]^2$$

$$[\hat{a} \quad \hat{b} \quad \hat{c}] = 1$$

Projection of $\hat{b} + \hat{c}$ on $\hat{a} \times \hat{b} = \frac{(\hat{b} + \hat{c}) \cdot (\hat{a} \times \hat{b})}{|\hat{a} \times \hat{b}|} = \frac{[\hat{a} \quad \hat{b} \quad \hat{c}]}{|\hat{a} \times \hat{b}|}$

3. Let
$$l = m = n = \frac{1}{\sqrt{2}}$$

4.
$$\overrightarrow{OC} = \alpha^2 (\overrightarrow{a} + \overrightarrow{b})^2 + \beta^2 (\overrightarrow{a} \times \overrightarrow{b})^2 + 2\alpha\beta [\overrightarrow{a} \cdot (\overrightarrow{a} \times \overrightarrow{b}) + \overrightarrow{b} \cdot (\overrightarrow{a} \times \overrightarrow{b})]$$

$$\Rightarrow 1 = \alpha^2 \left(1 + 1 + 2 \cdot 1 \cdot 1 \frac{1}{2} \right) + \beta^2 \cdot 1 \cdot 1 \left(\frac{\sqrt{3}}{2} \right)^2 + 0$$

Also,
$$\overrightarrow{OB} \cdot \overrightarrow{OC} = |\overrightarrow{OB}| \cdot |\overrightarrow{OC}| \cos \frac{\pi}{3}$$

$$\Rightarrow \qquad \alpha \cdot 1 \cdot 1 \cdot \frac{1}{2} + \alpha \cdot 1 = \frac{1}{2} \Rightarrow \alpha = \frac{1}{3} \qquad \dots (2)$$

From (1) and (2),
$$\beta^2 = \frac{8}{9}$$

5.
$$\overrightarrow{v}_{n+1} - \overrightarrow{v}_n = \left(\begin{bmatrix} 0 & -1/2 \\ 1/2 & 0 \end{bmatrix}\right)^{n+1} \overrightarrow{v}_0$$

$$\overrightarrow{v}_{2} - \overrightarrow{v}_{1} = \begin{bmatrix} 0 & -1/2 \\ 1/2 & 0 \end{bmatrix} \overrightarrow{v}_{0}$$

$$\overrightarrow{v}_3 - \overrightarrow{v}_2 = \begin{bmatrix} 0 & -1/2 \\ 1/2 & 0 \end{bmatrix}^3 \overrightarrow{v}_0$$

$$\overrightarrow{v}_{n} - \overrightarrow{v}_{n-1} = \begin{bmatrix} 0 & -1/2 \\ 1/2 & 0 \end{bmatrix}^{n} \overrightarrow{v}_{0}$$

Adding all the equations,

$$\overrightarrow{v}_n - \overrightarrow{v}_0 = (A + A^2 + A^3 + \dots A^n) \overrightarrow{v}_0$$

where
$$A = \begin{bmatrix} 0 & -1/2 \\ 1/2 & 0 \end{bmatrix} \Rightarrow \overrightarrow{v}_n = (I + A + A^2 + \dots) \overrightarrow{v}_0$$

6. Let
$$B = A - \frac{1}{3}A^{2} + \frac{1}{9}A^{3} - \frac{1}{27}A^{4} + \dots$$
$$-\frac{AB}{3} = -\frac{A^{2}}{3} + \frac{1}{9}A^{3} - \frac{1}{27}A^{4} + \dots$$
$$\left(I + \frac{A}{3}\right)B = A$$
$$B = \frac{1}{3}(3I + A)^{-1}A$$
7. det $M_{n} = \sum_{k=0}^{n} \left(\frac{1}{(2k+1)!} - \frac{1}{(2k+2)!}\right) = \frac{1}{1!} - \frac{1}{(2n+2)!}$
8.
$$|\overrightarrow{a} + \overrightarrow{b}| = \sqrt{3}$$

⇒ Squaring both sides
⇒
$$\overrightarrow{a} \cdot \overrightarrow{b} = \frac{1}{2}$$

 $\overrightarrow{c} = \overrightarrow{a} + 2 \overrightarrow{b} - 3 \overrightarrow{a} \times \overrightarrow{b}$
⇒ $\overrightarrow{a} \cdot \overrightarrow{c} = 2 & \overrightarrow{b} \cdot \overrightarrow{c} = \frac{5}{2}$
 $p = |(\overrightarrow{a} \cdot \overrightarrow{a}) \overrightarrow{b} - (\overrightarrow{b} \cdot \overrightarrow{c}) \overrightarrow{a}|$
 $p = \sqrt{2 \overrightarrow{b} - \frac{5}{2} \overrightarrow{a}|^2}$

$$p = \frac{\sqrt{21}}{2} \Rightarrow [p] = 2$$

9.
$$\overrightarrow{r} = (\overrightarrow{a} \times \overrightarrow{b}) \sin x + (\overrightarrow{b} \times \overrightarrow{c}) \cos y + 2(\overrightarrow{c} \times \overrightarrow{a})$$

$$\overrightarrow{r} \cdot \overrightarrow{a} = [\overrightarrow{b} \ \overrightarrow{c} \ \overrightarrow{a}] \cos y$$

$$\overrightarrow{r} \cdot \overrightarrow{b} = 2[\overrightarrow{c} \ \overrightarrow{a} \ \overrightarrow{b}]$$

$$\overrightarrow{r} \cdot \overrightarrow{c} = \sin x \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$

$$\Rightarrow \sin x + \cos y + 2 = 0$$

$$\sin x = -1 \quad \text{and} \quad \cos y = -1$$

$$x = -\frac{\pi}{2}$$

Solution of Advanced Problems in Mathematics for JEE

10. New equation of plane :
$$4x + 7y + 4z + 81 + \lambda (5x + 3y + 10z - 25) = 0$$

 $(4 + 5\lambda) 4 + (7 + 3\lambda) 7 + (4 + 10\lambda) 4 = 0$
 $\Rightarrow \qquad \qquad \lambda = -1$
 $\Rightarrow \qquad \text{Equation of plane} : x - 4y + 6z - 106 = 0$
 $\text{distance} = \frac{106}{\sqrt{53}} = \sqrt{212}$

18.
$$\overset{\rightarrow}{\omega} \times \overset{\rightarrow}{\mu} = \overset{\rightarrow}{\nu}$$
 $\overset{\rightarrow}{\nu} \cdot (\overset{\rightarrow}{\omega} \times \overset{\rightarrow}{\mu}) = \overset{\rightarrow}{\nu} \cdot \overset{\rightarrow}{\nu} = 1$